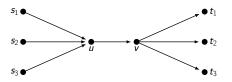
Edge-Disjoint Branchings in Temporal Graphs

Victor Campos¹, Raul Lopes¹, Andréa Marino² and Ana Silva¹

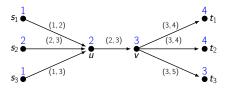
¹Universidade Federal do Ceará, Brazil ²Universitá degli Studi Firenze, Italy

• Digraph that changes with time.



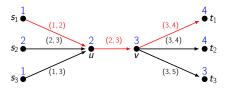
• $\exists s_i \rightarrow t_i$ paths.

• Digraph that changes with time.



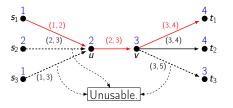
- $\exists s_i \rightarrow t_i$ paths.
- add vertex times.
- (*departure*, *arrival*) times for the edges.

• Digraph that changes with time.



- $\exists s_i \rightarrow t_i$ paths.
- add vertex times.
- (*departure*, *arrival*) times for the edges.
- $\exists (s_1, 1) \rightarrow (t_1, 4)$ temporal path.

• Digraph that changes with time.

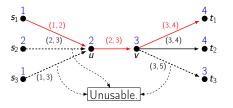


- $\exists s_i \rightarrow t_i$ paths.
- add vertex times.
- (*departure*, *arrival*) times for the edges.
- $\exists (s_1, 1) \rightarrow (t_1, 4)$ temporal path.

Summary

• Temporal graph G = base static digraph D plus

• Digraph that changes with time.

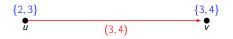


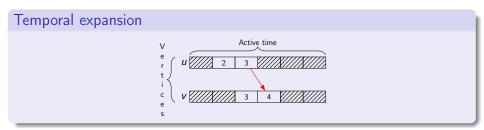
- $\exists s_i \rightarrow t_i$ paths.
- add vertex times.
- (*departure*, *arrival*) times for the edges.
- $\exists (s_1, 1) \rightarrow (t_1, 4)$ temporal path.

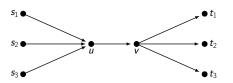
Summary

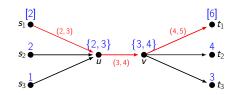
- Temporal graph G = base static digraph D plus
 - Activity times for the vertices, *departure* and *arrival* times for the edges.
 - v is *permanent* if v is always *active*.

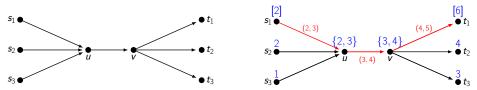
Alternative view



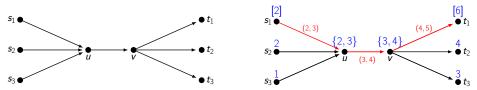




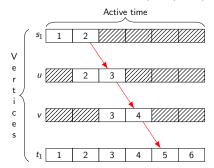




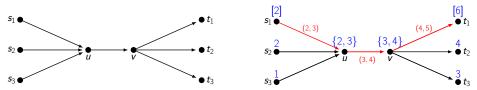
• Use red edges at correct time to construct $(s_1,1)
ightarrow (t_1,6)$ temporal path.



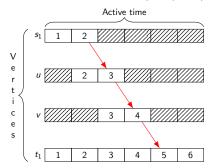
• Use red edges at correct time to construct $(s_1, 1) \rightarrow (t_1, 6)$ temporal path.



• $(s_1,1)$ wait $(s_2,2) \rightarrow (u,3) \rightarrow (v,4) \rightarrow (t_1,5)$ wait $(t_1,6)$.

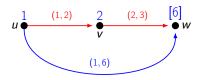


• Use red edges at correct time to construct $(s_1, 1) \rightarrow (t_1, 6)$ temporal path.

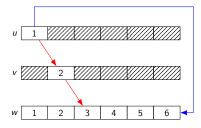


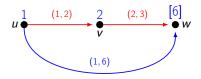
• $(s_1,1)$ wait $(s_2,2) \rightarrow (u,3) \rightarrow (v,4) \rightarrow (t_1,5)$ wait $(t_1,6)$.

• Lifetime = 6, t_1 is *permanent*.

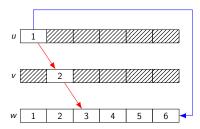


• \exists two $u \rightarrow w$ temporal paths.



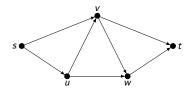


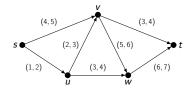
• \exists two $u \rightarrow w$ temporal paths.



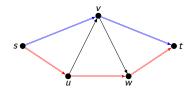
- *Blue path* has min #edges.
- Red path has shortest arrival time $(u, 1) \rightarrow (w_3)$.

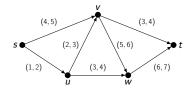
• Menger's Theorem: Vertex version depends on cut interpretation.





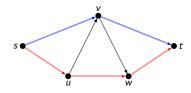
• Menger's Theorem: Vertex version depends on cut interpretation.

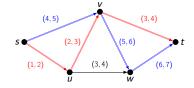




- Two internally disjoint $s \rightarrow t$ paths.
- |Separator| = 2.

• Menger's Theorem: Vertex version depends on cut interpretation.



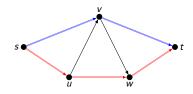


- Two internally disjoint $s \rightarrow t$ paths.
- |Separator| = 2.

• |Separator| = 2

• Any 2 temporal paths intersect.

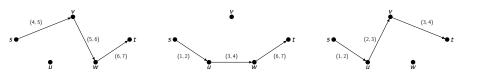
• Menger's Theorem: Vertex version depends on cut interpretation.



(4,5) (2,3) (1,2) (3,4) (5,6) (5,6) (6,7)

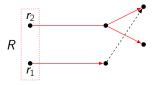
- Two internally disjoint $s \rightarrow t$ paths.
- |Separator| = 2.

- |Separator| = 2
- Any 2 temporal paths intersect.



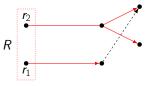
Disjoint branchings

• Spanning branching with root R: path from $R \rightarrow \text{every } v \notin R$.

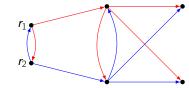


Disjoint branchings

• Spanning branching with root R: path from $R \rightarrow$ every $v \notin R$.



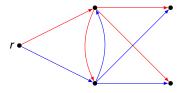
• *Disjoint* spanning branchings with roots r_1, r_2 .



Disjoint branchings II

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at $r \iff d^-(X) \ge k$ for all $X \subseteq V(D) - r$.

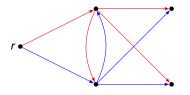


Jack Edmonds. *Edge-disjoint branchings.* Combinatorial Algorithms, 1973.

Disjoint branchings II

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at $r \iff d^{-}(X) \ge k$ for all $X \subseteq V(D) - r$.



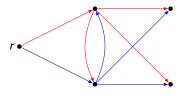
- \bullet Characterization \implies polynomial time algorithm.
- Particular case of flow problem that is, in general, hard.

Jørgen Bang-Jensen and Stéphane Bessy. (Arc-)disjoint flows in networks. Theoretical Computer Science, 2014.

Disjoint branchings II

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at $r \iff d^{-}(X) \ge k$ for all $X \subseteq V(D) - r$.



- Characterization \implies polynomial time algorithm.
- Particular case of flow problem that is, in general, hard.
- Does not hold for temporal graphs.
 - One of many cases we consider.

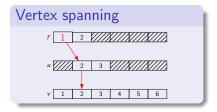
David Kempe, Jon Kleinberg and Amit Kumar. *Connectivity and inference problems for temporal networks.* Proceedings of the 32nd annual ACM Symposium on Theory of Computing (STOC), 2000.

Temporal branchings I

• *Vertex* spanning VS *Temporal* spanning.

Temporal branchings I

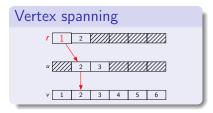
- Vertex spanning VS Temporal spanning.
 - Span every vertex VS



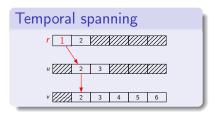
• Spans all vertices.

Temporal branchings I

- Vertex spanning VS Temporal spanning.
 - Span every vertex VS Span every vertex at every time.



• Spans all vertices.



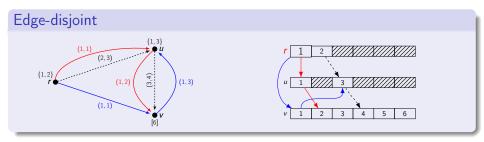
• Spans all *temporal* vertices.

Temporal branchings II

• *Edge*-disjoint branchings VS *Temporal*-disjoint branchings.

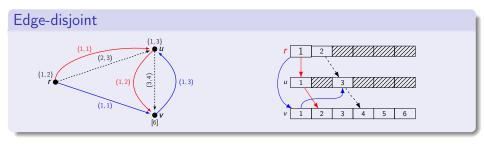
Temporal branchings II

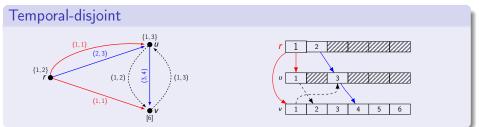
- *Edge*-disjoint branchings VS *Temporal*-disjoint branchings.
 - Not using same base edge VS



Temporal branchings II

- *Edge*-disjoint branchings VS *Temporal*-disjoint branchings.
 - Not using same base edge VS Not using same temporal edge.





Finding k Temporal-disjoint + temporal spanning

Finding k Temporal-disjoint + temporal spanning

- Input on the left adapted to digraph on the right.
- Polynomial time algorithm by Edmonds'.

Finding k Edge-disjoint + temporal spanning

Finding k Edge-disjoint + temporal spanning

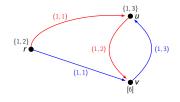
- NP-complete even if D is in-star and each snapshot has constant size.
- NP-complete if \mathcal{G} has lifetime \geq 3.
- Solvable in Polynomial time if all vertices are permanent.

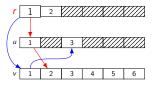
Temporal-disjoint + vertex spanning

Temporal-disjoint + vertex spanning

- NP-complete even if
 - ► D is a DAG,
 - G has lifetime 2, and
 - all vertices are permanent

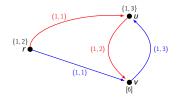
Edge-disjoint + vertex spanning

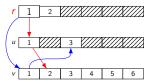




Edge-disjoint + vertex spanning

• Temporal graph \mathcal{G} with base digraph D.





• NP-complete even if

- ► D is a DAG,
- $\blacktriangleright \ {\cal G}$ has lifetime 2, and
- all vertices are permanent

- Parameterized complexity: polynomial time algorithm for
 - fixed lifetime? (except edge-disjoint, temporal spanning).
 - fixed treewidth? (except vertex spanning variants).
- Algorithms matching computational lower bounds under ETH?

Summary

- We consider 4 definitions for *temporal branchings*.
- Edmonds' characterization not true in general.

	not permanent vertices		permanent vertices	
	edge-disjoint	t-edge-disjoint	edge-disjoint	t-edge-disjoint
temporal- spanning	NP-c ¹	Poly*	Poly	Poly
vertex- spanning	NP-c ²	NP-c ²	NP-c ²	NP-c ²

Our results. Vertices are permanent if they are always active.

- * Edmonds' characterization for temporal expansion.
- 1 Even if ${\cal D}$ is an in-star and each snapshot has constant size; or if ${\cal G}$ has lifetime ≥ 3
- 2 Even if D is a DAG, G has lifetime \geq 2, and all vertices are permanent.