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Temporal Graphs

@ Digraph that changes with time.
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@ Digraph that changes with time.

4t1 @ ds; — t; paths.
. @ add vertex times.
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o (departure, arrival) times for the
3 edges.

e J(s1,1) — (t1,4) temporal path.

Summary

e Temporal graph G = base static digraph D plus

Activity times for the vertices, departure and arrival times for the edges.
v is permanent if v is always active.




Alternative view
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Using [k] = {1,..., k}.
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Using [k] = {1,..., k}.
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@ Use red edges at correct time to construct (s1,1) — (t1,6) temporal path.



Using [k] = {1,..., k}.
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o Use red edges at correct time to construct (s1,1) — (t1,6) temporal path.

Active time
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o (s1,1) wait (s2,2)—(u,3)—(v,4)—(t1,5) wait (t1,6).



Using [k] = {1,..., k}.
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o Use red edges at correct time to construct (s1,1) — (t1,6) temporal path.
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o (s1,1) wait (s2,2)—(u,3)—(v,4)—(t1,5) wait (t1,6).

o Lifetime = 6, t; is permanent.



Understanding temporal paths
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e Jtwo u — w temporal paths.



Understanding temporal paths

1 w2 2 (3 [6] @ Jtwo u — w temporal paths.
ow

‘ @ Blue path has min #edges.

R s @ Red path has shortest arrival time
(u,1) = (ws).
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Understanding temporal paths |l

o Menger's Theorem: Vertex version depends on cut interpretation.
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Disjoint branchings

@ Spanning branching with root R: path from R — every v ¢ R.
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Disjoint branchings

@ Spanning branching with root R: path from R — every v ¢ R.

r <
R

o Disjoint spanning branchings with roots ry, r>.
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Disjoint branchings Il

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at r <= d~(X) > k for all
X C V(D) —r.

@ Jack Edmonds.
Edge-disjoint branchings.
Combinatorial Algorithms, 1973.



Disjoint branchings Il

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at r <= d~(X) > k for all
X C V(D) —r.

o Characterization = polynomial time
algorithm.

r @ Particular case of flow problem that is, in
general, hard.

ﬁ Jgrgen Bang-Jensen and Stéphane Bessy.
(Arc-)disjoint flows in networks.
Theoretical Computer Science, 2014.



Disjoint branchings Il

Theorem (Edmonds, 1973)

A digraph D has k edge-disjoint branchings rooted at r <= d~(X) > k for all
X C V(D) —r.

o Characterization = polynomial time
algorithm.

r @ Particular case of flow problem that is, in
general, hard.
@ Does not hold for temporal graphs.

» One of many cases we consider.

[3 David Kempe, Jon Kleinberg and Amit Kumar.
Connectivity and inference problems for temporal networks.
Proceedings of the 32nd annual ACM Symposium on Theory of Computing
(STOC), 2000.
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o Vertex spanning VS Temporal spanning.
> Span every vertex VS

Vertex spanning
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@ Spans all vertices.



Temporal branchings |

o Vertex spanning VS Temporal spanning.
> Span every vertex VS Span every vertex at every time.

Vertex spanning Temporal spanning
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@ Spans all vertices. @ Spans all temporal vertices.
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o Edge-disjoint branchings VS Temporal-disjoint branchings.



Temporal branchings Il

o Edge-disjoint branchings VS Temporal-disjoint branchings.
> Not using same base edge VS

Edge-disjoint
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Temporal branchings Il

o Edge-disjoint branchings VS Temporal-disjoint branchings.
> Not using same base edge VS Not using same temporal edge.

Edge-disjoint

(11)
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Finding k Temporal-disjoint + temporal spanning

e Temporal graph G with base digraph D.




Finding k Temporal-disjoint + temporal spanning

e Temporal graph G with base digraph D.
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@ Input on the left adapted to digraph on the right.
@ Polynomial time algorithm by Edmonds'.



Finding k Edge-disjoint + temporal spanning

e Temporal graph G with base digraph D.
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Finding k Edge-disjoint + temporal spanning

e Temporal graph G with base digraph D.
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@ NP-complete even if D is in-star and each snapshot has constant size.
@ NP-complete if G has lifetime > 3.

@ Solvable in Polynomial time if all vertices are permanent.



Temporal-disjoint + vertex spanning

@ Temporal graph G with base digraph D.
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Temporal-disjoint + vertex spanning

@ Temporal graph G with base digraph D.
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@ NP-complete even if
» D is a DAG,
» G has lifetime 2, and
» all vertices are permanent



Edge-disjoint + vertex spanning

@ Temporal graph G with base digraph D.
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Edge-disjoint + vertex spanning

@ Temporal graph G with base digraph D.
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@ NP-complete even if
» D is a DAG,
» G has lifetime 2, and
> all vertices are permanent



Open questions

o Parameterized complexity: polynomial time algorithm for
> fixed lifetime? (except edge-disjoint, temporal spanning).
> fixed treewidth? (except vertex spanning variants).

@ Algorithms matching computational lower bounds under ETH?



Summary

o We consider 4 definitions for temporal branchings.

@ Edmonds’ characterization not true in general.

not permanent vertices permanent vertices
edge-disjoint | t-edge-disjoint | edge-disjoint | t-edge-disjoint
temporal- 1 N
spanning NP-c Poly Poly Poly
vertex- NP-c NP-c NP-c NP-c?
spanning

Our results. Vertices are permanent if they are always active.

* Edmonds’ characterization for temporal expansion.

1 Even if D is an in-star and each snapshot has constant size; or if G has

lifetime > 3

2 Even if D is a DAG, G has lifetime > 2, and all vertices are permanent.




