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Temporal Graphs

Digraph that changes with time.
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∃(s1, 1)→ (t1, 4) temporal path.

Summary

Temporal graph G = base static digraph D plus

I Activity times for the vertices, departure and arrival times for the edges.
I v is permanent if v is always active.
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Using [k] = {1, . . . , k}.
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1 2 3 4 5 6t1

3 4v

2 3u

1 2s1

Active time

V
e
r
t
i
c
e
s

(s1, 1) wait (s2, 2)→(u, 3)→(v , 4)→(t1, 5) wait (t1, 6).
Lifetime = 6, t1 is permanent.



Using [k] = {1, . . . , k}.

s3

s2

s1

t3

t2

t1

u v

s1
[2]

s2
2

s3
1

t1
[6]

t2
4

t3
3

u

{2, 3}
v

{3, 4}
(2, 3)

(3, 4)

(4, 5)

Use red edges at correct time to construct (s1, 1)→ (t1, 6) temporal path.

1 2 3 4 5 6t1

3 4v

2 3u

1 2s1

Active time

V
e
r
t
i
c
e
s

(s1, 1) wait (s2, 2)→(u, 3)→(v , 4)→(t1, 5) wait (t1, 6).
Lifetime = 6, t1 is permanent.



Using [k] = {1, . . . , k}.

s3

s2

s1

t3

t2

t1

u v

s1
[2]

s2
2

s3
1

t1
[6]

t2
4

t3
3

u

{2, 3}
v

{3, 4}
(2, 3)

(3, 4)

(4, 5)

Use red edges at correct time to construct (s1, 1)→ (t1, 6) temporal path.

1 2 3 4 5 6t1

3 4v

2 3u

1 2s1

Active time

V
e
r
t
i
c
e
s

(s1, 1) wait (s2, 2)→(u, 3)→(v , 4)→(t1, 5) wait (t1, 6).

Lifetime = 6, t1 is permanent.



Using [k] = {1, . . . , k}.

s3

s2

s1

t3

t2

t1

u v

s1
[2]

s2
2

s3
1

t1
[6]

t2
4

t3
3

u

{2, 3}
v

{3, 4}
(2, 3)

(3, 4)

(4, 5)

Use red edges at correct time to construct (s1, 1)→ (t1, 6) temporal path.

1 2 3 4 5 6t1

3 4v

2 3u

1 2s1

Active time

V
e
r
t
i
c
e
s

(s1, 1) wait (s2, 2)→(u, 3)→(v , 4)→(t1, 5) wait (t1, 6).
Lifetime = 6, t1 is permanent.



Understanding temporal paths
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∃ two u → w temporal paths.

Blue path has min #edges.
Red path has shortest arrival time
(u, 1)→ (w3).
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Understanding temporal paths II

Menger’s Theorem: Vertex version depends on cut interpretation.
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Disjoint branchings

Spanning branching with root R: path from R → every v 6∈ R.
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Disjoint branchings II

Theorem (Edmonds, 1973)
A digraph D has k edge-disjoint branchings rooted at r ⇐⇒ d−(X ) ≥ k for all
X ⊆ V (D)− r .

r

Characterization =⇒ polynomial time
algorithm.
Particular case of flow problem that is, in
general, hard.
Does not hold for temporal graphs.

I One of many cases we consider.

Jack Edmonds.
Edge-disjoint branchings.
Combinatorial Algorithms, 1973.
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Theorem (Edmonds, 1973)
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Temporal branchings I

Vertex spanning VS Temporal spanning.

I Span every vertex VS Span every vertex at every time.

Vertex spanning
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Spans all temporal vertices.

Most works in temporal graphs consider all vertices to be permanent.
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Temporal branchings II

Edge-disjoint branchings VS Temporal-disjoint branchings.

I Not using same base edge VS Not using same temporal edge.
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Finding k Temporal-disjoint + temporal spanning

Temporal graph G with base digraph D.
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Temporal-disjoint + vertex spanning

Temporal graph G with base digraph D.
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Open questions

Parameterized complexity: polynomial time algorithm for
I fixed lifetime? (except edge-disjoint, temporal spanning).
I fixed treewidth? (except vertex spanning variants).

Algorithms matching computational lower bounds under ETH?



Summary

We consider 4 definitions for temporal branchings.
Edmonds’ characterization not true in general.

not permanent vertices permanent vertices
edge-disjoint t-edge-disjoint edge-disjoint t-edge-disjoint

temporal- NP-c1 Poly∗ Poly Polyspanning
vertex- NP-c2 NP-c2 NP-c2 NP-c2
spanning

Our results. Vertices are permanent if they are always active.

* Edmonds’ characterization for temporal expansion.
1 Even if D is an in-star and each snapshot has constant size; or if G has

lifetime ≥ 3
2 Even if D is a DAG, G has lifetime ≥ 2, and all vertices are permanent.


