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XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples
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)
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O
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2k · n2

)
Poly exponent independent of k .
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Kernels

Kernelization algorithm:

Input: Instance (G , k) of P
Output: In polynomial time, an instance (G ′, k ′) of P s.t.:

|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.
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Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.

Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some
restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1



Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1



Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1



Routing problems
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Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
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k-DDP is FPT in planar digraphs.

k-DDPC is XP in (36k3 + 2k)-stronlgy connected digraphs for
c = 2.
DDPC is XP with param d = k − c in DAGs.

Cygan, M., Marx, D., Pilipczuk, M. and Pilipczuk, M.
The planar directed k-vertex-disjoint paths problem is
fixed-parameter tractable
In Proc. of the IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), 2013
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Summary of positive results

Congestion c .
d = k − c .

Version
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DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).
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Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

We bring positive news for general digraphs.



The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.

Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).
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=⇒ negative instance DDPC (c ≤ 2)

=⇒ positive for DEDP (d ≤ n − 5, s ≥ 1)
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≤ s

d

=⇒ sol. for s = 3

d

=⇒ sol. for s = 0

d = n, s = 1 =⇒ paths disjoint in V (D) =⇒ DDP.
d = n, s ≥ 2 =⇒ congestion s in V (D) =⇒ DDPC with
congestion s.
s = 0 =⇒ paths avoiding d vertices =⇒ Steiner Network.
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DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;
d−(si ) = 0 and d+(ti ) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.
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DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.

c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.

Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.

Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.

DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.

s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.



Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.
Step 2: Reduce clean instance with k requests to clean instance with k − 1

requests (Iteration).
Step 3: Solve large clean instances when k = 2 (Base).
Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).
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Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).

Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.
Order is not important.
Sol. for (D/X , I , k, d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.
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Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si ) = d+(ti ) = 0, all terminals distinct.

B1 B2

· · ·

Bi Bj

· · ·

Bk

v

Bi = {v | (si , ti ) is blocked by v}.
|Bi | ≥ n

k + 1,∀i

=⇒
∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi )| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi ))| ≥ n(k−1)

2k .
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Large clean instances

Lemma (Step 2 (Iteration))

(D, I , k, d) clean =⇒ ∃Pi from si → ti s.t. |V (D/(Bi ∪ Pi )| ≥ n(k−1)
2k .

Lemma (Step 3 (Base))

(D, I , k, d) clean, k = 2, n ≥ 4d =⇒ positive instance, solution in
polynomial time.

- For large enough n :
Iterate Step 2 until k = 2.

Solve instance k = 2 using Step 3.

Step 3

Step 2

Math Machine

n ≥ d · 2k−1 · k
=⇒

positive, sol. in polynomial time
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Real kernel size: d · 2k−s ·
(
k
s

)
+ 2k .

Open: Poly-kernel?
Negative answer for s = 0 suffices.
Our result =⇒ kernel for Steiner Network with params. k and
d = n − c , where c is the size of the solution.
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Disjoint Enough Paths:
Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.

Output: P = {P1, . . . ,Pk} satisfying I s.t. ≥ d vertices occurring in ≤ s
paths.

Parameters Generalizes
d = n, s = 1 Disjoint Paths
d = n, s ≥ 2 Disjoint Paths with Congestion
d ≥ 1, s = 0 Steiner Network

k d s dtw Complexity
fixed ≥ 3 nα fixed ≥ 1 — NP-complete
parameter nα fixed ≥ 1 0 W[1]-hard

input parameter fixed ≥ 0 — W[1]-hard
parameter — — parameter XP

input parameter parameter — XP
parameter parameter parameter — FPT

Positive results for general digraphs.
Kernel size: d · 2k−s ·

(
k
s

)
+ 2k .

Open: Poly-kernel. Negative answer for s = 0 suffices.
Consequence for Steiner Network particularly interesting.


