
A relaxation of the Directed Disjoint Paths
problem: a global congestion metric helps

R. Lopes 1,2 I. Sau 2

1Universidade Federal do Ceará, Brazil
2LIRMM, Université de Montpellier, France

August, 2020

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)

Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).

P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).

P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)

Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).

P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.

k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

XP and FPT

Problem P of size n with a parameter k :
P ∈ XP =⇒ P can be solved in O

(
g(k) · nf (k)

)
.

P ∈ FPT =⇒ P can be solved in O (f (k) · nc).
P is W[1]-hard =⇒ strong evidence that P 6∈ FPT.
k-Clique ∈ XP and is W[1]-hard.

Examples

O
(
n2k

)
Poly time for fixed k .

O
(
2k · n2

)
Poly exponent independent of k .

Kernels

Kernelization algorithm:

Input: Instance (G , k) of P
Output: In polynomial time, an instance (G ′, k ′) of P s.t.:

|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:

|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:

|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k) (G ′, k ′)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:
|G ′|+ k ′ ≤ f (k).

(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k) (G ′, k ′)

size ≤ f (k)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:
|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k) (G ′, k ′)

size ≤ f (k)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:
|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k) (G ′, k ′)

size ≤ f (k)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Kernels

Kernelization algorithm:
Input: Instance (G , k) of P

Output: In polynomial time, an instance (G ′, k ′) of P s.t.:
|G ′|+ k ′ ≤ f (k).
(G , k) ⇐⇒ (G ′, k ′).

f (k) polynomial =⇒ Polynomial kernel for P.

(G , k) (G ′, k ′)

size ≤ f (k)

Theorem
A parameterized problem P has a kernel ⇐⇒ P is FPT.

Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.

Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some
restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1

Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1

Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Pairwise vertex-disjoint paths.

=⇒ k-Directed Disjoint Paths (k-DDP).

s4

s3

s2

s1

t4

t3

t2

t1

Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Every vertex in ≤ c paths.

=⇒ (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

s4

s3

s2

s1

t4

t3

t2

t1

c = 2 in the example.

Routing problems

In a digraph D:

Input: Set of requests I = {(s1, t1), . . . , (sk , tk)}.
Output: Collection of paths P = {P1, . . . ,Pk} satisfying I under some

restriction.

Every vertex in ≤ c paths.

=⇒ (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

k-DDP
NP-complete for k = 2.

XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

S. Fortune and J.E. Hopcroft and J. Wyllie.
The directed subgraph homeomorphism problem
Theoretical Computer Science, 10, 1980

k-DDP
NP-complete for k = 2.
XP in DAGs.

W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

S. Fortune and J.E. Hopcroft and J. Wyllie.
The directed subgraph homeomorphism problem
Theoretical Computer Science, 10, 1980

k-DDP
NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.

XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

A. Slivkins
Parameterized Tractability of Edge-Disjoint Paths on Directed
Acyclic Graphs
SIAM Journal on Discrete Mathematics 24.1, 2010

k-DDP
NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

T. Johnson and N. Robertson and P.D. Seymour and R. Thomas,
Directed tree-width
Journal of Combinatorial Theory, Series B, Volume 82, Issue 1,
2001, Pages 138-154

k-DDP
NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.

XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

Extension of Slivkins reduction, and improved upon.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP
NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.

XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP
NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP (all hold for edge disjoint)

NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC (all hold for edge congestion)

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP (all hold for edge disjoint)

NP-complete for k = 2.
XP in DAGs.
W[1]-hard in DAGs.
XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC (all hold for edge congestion)

W[1]-hard in DAGs.
XP in DAGs.
XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP is FPT in planar digraphs.

k-DDPC is XP in (36k3 + 2k)-stronlgy connected digraphs for
c = 2.
DDPC is XP with param d = k − c in DAGs.

Cygan, M., Marx, D., Pilipczuk, M. and Pilipczuk, M.
The planar directed k-vertex-disjoint paths problem is
fixed-parameter tractable
In Proc. of the IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), 2013

k-DDP is FPT in planar digraphs.
k-DDPC is XP in (36k3 + 2k)-stronlgy connected digraphs for
c = 2.

DDPC is XP with param d = k − c in DAGs.

Edwards, K., Muzi, I. and Wollan, P.
Half-integral linkages in highly connected directed graphs
In Proc. of the 25th Annual European Symposium on Algorithms
(ESA), 2017

k-DDP is FPT in planar digraphs.
k-DDPC is XP in (36k3 + 2k)-stronlgy connected digraphs for
c = 2.
DDPC is XP with param d = k − c in DAGs.

Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or

- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.

- XP for c = 3 (uses Directed Grid Theorem).

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

K. Kawarabayashi and S. Kreutzer.
The Directed Grid Theorem
Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing

Summary of positive results

Congestion c .
d = k − c .

Version
Digraph DAG dtw ≤ w Planar Strong

DDP XP on k XP on k + w FPT on k −−−
DDPC XP on k, XP on d XP on k + w FPT on k XP on k for c = 2

What about general digraphs?
Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.
- XP for c = 3 (uses Directed Grid Theorem).

We bring positive news for general digraphs.

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.

Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).

in ≤ s paths of the collection (local congestion metric).

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

s4

s3

s2

s1

t4

t3

t2

t1

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

s4

s3

s2

s1

t4

t3

t2

t1

=⇒ negative instance DDPC (c ≤ 2)

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring (global congestion metric).
in ≤ s paths of the collection (local congestion metric).

s4

s3

s2

s1

t4

t3

t2

t1

5 congested

=⇒ negative instance DDPC (c ≤ 2)

=⇒ positive for DEDP (d ≤ n − 5, s ≥ 1)

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring in ≤ s paths.

≤ s

d

=⇒ sol. for s = 3

d

=⇒ sol. for s = 0

d = n, s = 1 =⇒ paths disjoint in V (D) =⇒ DDP.
d = n, s ≥ 2 =⇒ congestion s in V (D) =⇒ DDPC with
congestion s.
s = 0 =⇒ paths avoiding d vertices =⇒ Steiner Network.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring in ≤ s paths.

≤ s

d

=⇒ sol. for s = 3

d

=⇒ sol. for s = 0

d = n, s = 1 =⇒ paths disjoint in V (D) =⇒ DDP.
d = n, s ≥ 2 =⇒ congestion s in V (D) =⇒ DDPC with
congestion s.
s = 0 =⇒ paths avoiding d vertices =⇒ Steiner Network.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring in ≤ s paths.

≤ s

d

=⇒ sol. for s = 3

d

=⇒ sol. for s = 0

d = n, s = 1 =⇒ paths disjoint in V (D) =⇒ DDP.
d = n, s ≥ 2 =⇒ congestion s in V (D) =⇒ DDPC with
congestion s.

s = 0 =⇒ paths avoiding d vertices =⇒ Steiner Network.

Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.
Output: P = {P1, . . . ,Pk} satisfying I s.t.

≥ d vertices occurring in ≤ s paths.

≤ s

d

=⇒ sol. for s = 3

d

=⇒ sol. for s = 0

d = n, s = 1 =⇒ paths disjoint in V (D) =⇒ DDP.
d = n, s ≥ 2 =⇒ congestion s in V (D) =⇒ DDPC with
congestion s.
s = 0 =⇒ paths avoiding d vertices =⇒ Steiner Network.

Summary of results

for 0 < α ≤ 1:

Hardness results
NP-complete for k ≥ 3, d = nα, fixed s ≥ 1.
W[1]-hard in DAGs with param. k , d = nα, fixed s ≥ 1.
W[1]-hard in DAGs with param. d , fixed s ≥ 0.

Positive results (all for general digraphs)

XP with params. k and dtw(D).
XP with params. d and s.
FPT with params. k , d and s.

Summary of results

for 0 < α ≤ 1:

Hardness results
NP-complete for k ≥ 3, d = nα, fixed s ≥ 1.
W[1]-hard in DAGs with param. k , d = nα, fixed s ≥ 1.
W[1]-hard in DAGs with param. d , fixed s ≥ 0.

Positive results (all for general digraphs)

XP with params. k and dtw(D).
XP with params. d and s.
FPT with params. k , d and s.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;
d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;
d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;
d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;

all terminals are distinct;
d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;

d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I , k, d , s) where:

s

d

k

I

D Input digraph

Set of requests
{(s1, t1), . . . , (sk , tk)}

k = |I |

Global congestion metric

Local congestion metric

To simplify the presentation, we
consider that:

s = 1;
all terminals are distinct;
d−(si) = 0 and d+(ti) = 0.

Goal: Find collection of paths satisfying I s.t. at least d vertices occur in
at most s paths of the collection.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.

c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

2-DDP objective: Find pairwise disjoint paths.

Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.

Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.

DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.

s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

DEDP is NP-complete for fixed k = 3

Reduction from 2-DDP.
c = n − d =⇒ ≤ c vertices in ≥ 2 paths.

V (D)

s2

s1

t2

t1

t ′2

{v1, . . . , vc}
s3

t3

2-DDP objective: Find pairwise disjoint paths.
Add t ′2 and c vertices in t2 → t ′2 path.
Add s3, t3, edges.
DEDP requests: {(s1, t1), (s2, t ′2), (s3, t3)}.
s3 → t3 path =⇒ c congested vertices =⇒ V (D) = {disjoint
part}.

Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.
Step 2: Reduce clean instance with k requests to clean instance with k − 1

requests (Iteration).
Step 3: Solve large clean instances when k = 2 (Base).
Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).

Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.

Step 2: Reduce clean instance with k requests to clean instance with k − 1
requests (Iteration).

Step 3: Solve large clean instances when k = 2 (Base).
Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).

Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.
Step 2: Reduce clean instance with k requests to clean instance with k − 1

requests (Iteration).

Step 3: Solve large clean instances when k = 2 (Base).
Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).

Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.
Step 2: Reduce clean instance with k requests to clean instance with k − 1

requests (Iteration).
Step 3: Solve large clean instances when k = 2 (Base).

Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).

Kernelization algorithm overview

Instance (D, I , k , d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, ∃i , j s.t. i 6= j
and there is no path from si to ti and no path from sj to tj in D \ {v}.

Goal: Find paths satisfying I and |X | ≥ d s.t. all v ∈ X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.
Step 2: Reduce clean instance with k requests to clean instance with k − 1

requests (Iteration).
Step 3: Solve large clean instances when k = 2 (Base).
Step 4: Use Steps 2 and 3 to solve clean instances with n ≥ f (k, d).

Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).

Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.
Order is not important.
Sol. for (D/X , I , k, d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.

Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).

Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.
Order is not important.
Sol. for (D/X , I , k, d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.

Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).
Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.

Order is not important.
Sol. for (D/X , I , k, d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.

Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).
Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.
Order is not important.

Sol. for (D/X , I , k, d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.

Bypassing and clean instances.

- Instance (D, I , k , d) of DEDP, I = {(s1, t1), . . . , (sk , tk)}.

Bypassing v

Delete v , add all arcs N−(v)→ N+(v).
Bypass X =⇒ bypass all vertices in X . Denoted by D/X .

v

=⇒

Can’t generate new congested vertices.
Order is not important.
Sol. for (D/X , I , k , d) is sol. for (D, I , k , d).

Step 1

Bypass all congested vertices to generate clean instance.

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

B1 B2

· · ·

Bi Bj

· · ·

Bk

v

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i

=⇒
∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

B1 B2

· · ·

Bi Bj

· · ·

Bk

v

Bi = {v | (si , ti) is blocked by v}.

|Bi | ≥ n
k + 1,∀i

=⇒
∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

B1 B2

· · ·

Bi Bj

· · ·

Bk

v

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i

=⇒
∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

B1 B2

· · ·

Bi Bj

· · ·

Bk

v

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i
=⇒

∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

si ti

Bi

si ti

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i
=⇒

∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

si ti

Bi

si ti

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i
=⇒

∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.

- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Clean instance k → k − 1

n = |V (D)− {sources} − {terminals}|.
Clean instance, s = 1, d−(si) = d+(ti) = 0, all terminals distinct.

si ti

Bi

si ti

Bi = {v | (si , ti) is blocked by v}.
|Bi | ≥ n

k + 1,∀i
=⇒

∑
i∈[k]

|Bi | ≥ n + 1 =⇒ ∃ congested v =⇒ ctd.

∃|Bi | ≤ n
k .

- Bypass Bi =⇒ 2 internally disjoint si → ti paths.
- Take shortest Pi from si → ti .

|V (D/Bi)| ≥ n(k−1)
k =⇒ |V (D/(Bi ∪ Pi))| ≥ n(k−1)

2k .

Large clean instances

Lemma (Step 2 (Iteration))

(D, I , k, d) clean =⇒ ∃Pi from si → ti s.t. |V (D/(Bi ∪ Pi)| ≥ n(k−1)
2k .

Lemma (Step 3 (Base))

(D, I , k, d) clean, k = 2, n ≥ 4d =⇒ positive instance, solution in
polynomial time.

- For large enough n :
Iterate Step 2 until k = 2.

Solve instance k = 2 using Step 3.

Step 3

Step 2

Math Machine

n ≥ d · 2k−1 · k
=⇒

positive, sol. in polynomial time

Large clean instances

Lemma (Step 2 (Iteration))

(D, I , k, d) clean =⇒ ∃Pi from si → ti s.t. |V (D/(Bi ∪ Pi)| ≥ n(k−1)
2k .

Lemma (Step 3 (Base))

(D, I , k, d) clean, k = 2, n ≥ 4d =⇒ positive instance, solution in
polynomial time.

- For large enough n :
Iterate Step 2 until k = 2.
Solve instance k = 2 using Step 3.

Step 3

Step 2

Math Machine

n ≥ d · 2k−1 · k
=⇒

positive, sol. in polynomial time

Large clean instances

Lemma (Step 2 (Iteration))

(D, I , k, d) clean =⇒ ∃Pi from si → ti s.t. |V (D/(Bi ∪ Pi)| ≥ n(k−1)
2k .

Lemma (Step 3 (Base))

(D, I , k, d) clean, k = 2, n ≥ 4d =⇒ positive instance, solution in
polynomial time.

- For large enough n :
Iterate Step 2 until k = 2.
Solve instance k = 2 using Step 3.

Step 3

Step 2

Math Machine

n ≥ d · 2k−1 · k
=⇒

positive, sol. in polynomial time

Real kernel size: d · 2k−s ·
(
k
s

)
+ 2k .

Open: Poly-kernel?
Negative answer for s = 0 suffices.
Our result =⇒ kernel for Steiner Network with params. k and
d = n − c , where c is the size of the solution.

Real kernel size: d · 2k−s ·
(
k
s

)
+ 2k .

Open: Poly-kernel?

Negative answer for s = 0 suffices.
Our result =⇒ kernel for Steiner Network with params. k and
d = n − c , where c is the size of the solution.

Real kernel size: d · 2k−s ·
(
k
s

)
+ 2k .

Open: Poly-kernel?
Negative answer for s = 0 suffices.

Our result =⇒ kernel for Steiner Network with params. k and
d = n − c , where c is the size of the solution.

Real kernel size: d · 2k−s ·
(
k
s

)
+ 2k .

Open: Poly-kernel?
Negative answer for s = 0 suffices.
Our result =⇒ kernel for Steiner Network with params. k and
d = n − c , where c is the size of the solution.

Disjoint Enough Paths:
Input: Requests I = {(s1, t1), . . . , (sk , tk)}, integers d and s.

Output: P = {P1, . . . ,Pk} satisfying I s.t. ≥ d vertices occurring in ≤ s
paths.

Parameters Generalizes
d = n, s = 1 Disjoint Paths
d = n, s ≥ 2 Disjoint Paths with Congestion
d ≥ 1, s = 0 Steiner Network

k d s dtw Complexity
fixed ≥ 3 nα fixed ≥ 1 — NP-complete
parameter nα fixed ≥ 1 0 W[1]-hard

input parameter fixed ≥ 0 — W[1]-hard
parameter — — parameter XP

input parameter parameter — XP
parameter parameter parameter — FPT

Positive results for general digraphs.
Kernel size: d · 2k−s ·

(
k
s

)
+ 2k .

Open: Poly-kernel. Negative answer for s = 0 suffices.
Consequence for Steiner Network particularly interesting.

