A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

R. Lopes 1,2 I. Sau 2

¹Universidade Federal do Ceará, Brazil ²LIRMM, Université de Montpellier, France

August, 2020

Problem \mathcal{P} of size *n* with a parameter *k*:

• $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.

Examples

Problem \mathcal{P} of size *n* with a parameter *k*:

• $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.

Examples $\mathcal{O}\left(n^{2k}\right)$

Problem \mathcal{P} of size *n* with a parameter *k*:

• $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.

Examples

$$\mathcal{O}\left(n^{2k}\right)$$

Poly time for fixed k.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.
- \mathcal{P} is W[1]-hard \implies strong evidence that $\mathcal{P} \notin \mathsf{FPT}$.

Poly time for fixed k.

Poly exponent independent of k.

Problem \mathcal{P} of size *n* with a parameter *k*:

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)})$.
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.
- \mathcal{P} is W[1]-hard \implies strong evidence that $\mathcal{P} \notin \mathsf{FPT}$.
- k-Clique \in XP and is W[1]-hard.

Examples

 $\mathcal{O}\left(n^{2k}\right)$

 $\mathcal{O}\left(2^k\cdot n^2\right)$

Poly time for fixed k.

Poly exponent independent of k.

Kernelization algorithm:

Kernelization algorithm: **Input:** Instance (G, k) of \mathcal{P}

Kernelization algorithm:

Input: Instance (G, k) of \mathcal{P}

Output: In polynomial time, an instance (G', k') of \mathcal{P} s.t.:

Kernelization algorithm:

Input: Instance (G, k) of \mathcal{P}

Output: In polynomial time, an instance (G', k') of \mathcal{P} s.t.:

• $|G'| + k' \le f(k)$.

Kernelization algorithm:

Input: Instance (G, k) of \mathcal{P}

Output: In polynomial time, an instance (G', k') of \mathcal{P} s.t.:

•
$$|G'| + k' \leq f(k)$$
.
• $(G, k) \iff (G', k')$.

Kernelization algorithm:

Input: Instance (G, k) of \mathcal{P}

Output: In polynomial time, an instance (G', k') of \mathcal{P} s.t.:

•
$$|G'| + k' \le f(k)$$
.
• $(G,k) \iff (G',k')$.

• f(k) polynomial \implies Polynomial kernel for \mathcal{P} .

Kernelization algorithm:

Input: Instance (G, k) of \mathcal{P}

Output: In polynomial time, an instance (G', k') of \mathcal{P} s.t.:

•
$$|G'| + k' \le f(k)$$
.
• $(G,k) \iff (G',k')$.

• f(k) polynomial \implies Polynomial kernel for \mathcal{P} .

Theorem

A parameterized problem \mathcal{P} has a kernel $\iff \mathcal{P}$ is FPT.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), ..., (s_k, t_k)\}.$

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \dots, (s_k, t_k)\}.$

Output: Collection of paths $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying *I* under some *restriction*.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \dots, (s_k, t_k)\}.$

Output: Collection of paths $\mathcal{P} = \{P_1, \ldots, P_k\}$ satisfying *I* under some *restriction*.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \dots, (s_k, t_k)\}.$

Output: Collection of paths $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying *I* under some *restriction*.

c = 2 in the example.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \dots, (s_k, t_k)\}.$

Output: Collection of paths $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying *I* under some *restriction*.

Every vertex in \leq c paths.

 \implies (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

• NP-complete for k = 2.

S. Fortune and J.E. Hopcroft and J. Wyllie. *The directed subgraph homeomorphism problem* Theoretical Computer Science, 10, 1980

- NP-complete for k = 2.
- XP in DAGs.

S. Fortune and J.E. Hopcroft and J. Wyllie. The directed subgraph homeomorphism problem Theoretical Computer Science, 10, 1980

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.

A. Slivkins

Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs SIAM Journal on Discrete Mathematics 24.1, 2010

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).

T. Johnson and N. Robertson and P.D. Seymour and R. Thomas, Directed tree-width Journal of Combinatorial Theory, Series B, Volume 82, Issue 1, 2001, Pages 138-154

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

• W[1]-hard in DAGs.

Extension of Slivkins reduction, and improved upon.

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

- W[1]-hard in DAGs.
- XP in DAGs.

Easy reduction to the disjoint case.

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC

- W[1]-hard in DAGs.
- XP in DAGs.
- XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

k-DDP (all hold for edge disjoint)

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).
- (k, c)-DDPC (all hold for edge congestion)
 - W[1]-hard in DAGs.
 - XP in DAGs.
 - XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

k-DDP (all hold for edge disjoint)

- NP-complete for k = 2.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC (all hold for edge congestion)

- W[1]-hard in DAGs.
- XP in DAGs.
- XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

• *k*-DDP is FPT in planar digraphs.

 Cygan, M., Marx, D., Pilipczuk, M. and Pilipczuk, M. The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable In Proc. of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), 2013

- *k*-DDP is FPT in planar digraphs.
- *k*-DDPC is XP in $(36k^3 + 2k)$ -stronlgy connected digraphs for c = 2.

Edwards, K., Muzi, I. and Wollan, P. Half-integral linkages in highly connected directed graphs In Proc. of the 25th Annual European Symposium on Algorithms (ESA), 2017

- *k*-DDP is FPT in planar digraphs.
- *k*-DDPC is XP in $(36k^3 + 2k)$ -stronlgy connected digraphs for c = 2.
- DDPC is XP with param d = k c in DAGs.
- Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R. Routing with congestion in acyclic digraphs Information Processing Letters (151), 2019

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on k, XP on d	XP on $k + w$	FPT on k	XP on k for $c = 2$

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on <i>k</i> , XP on <i>d</i>	XP on $k + w$	FPT on k	XP on k for $c = 2$

- What about *general* digraphs?
- Asymmetric version that either outputs a

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on <i>k</i> , XP on <i>d</i>	XP on $k + w$	FPT on k	XP on k for $c = 2$

- What about *general* digraphs?
- Asymmetric version that either outputs a
 - positive answer for DDPC; or

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on <i>k</i> , XP on <i>d</i>	XP on $k + w$	FPT on k	XP on k for $c = 2$

- What about *general* digraphs?
- Asymmetric version that either outputs a
 - positive answer for DDPC; or
 - negative answer for DDP.

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on <i>k</i> , XP on <i>d</i>	XP on $k + w$	FPT on k	XP on k for $c = 2$

- What about *general* digraphs?
- Asymmetric version that either outputs a
 - positive answer for DDPC; or
 - negative answer for DDP.
 - XP for c = 3 (uses Directed Grid Theorem).
- K. Kawarabayashi and S. Kreutzer. The Directed Grid Theorem Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing

Summary of positive results

- Congestion c.
- d = k c.

Digraph Version	DAG	$dtw \leq w$	Planar	Strong
DDP	XP on <i>k</i>	XP on $k + w$	FPT on k	
DDPC	XP on <i>k</i> , XP on <i>d</i>	XP on $k + w$	FPT on k	XP on k for $c = 2$

- What about *general* digraphs?
- Asymmetric version that either outputs a
 - positive answer for DDPC; or
 - *negative answer* for DDP.
 - XP for c = 3 (uses Directed Grid Theorem).

We bring positive news for general digraphs.

- Paths be disjoint in a large part of the digraph.

Input: *Requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}$, integers *d* and *s*.

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying I s.t.

- Paths be disjoint in a large part of the digraph.

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers *d* and *s*. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying *I* s.t. $\geq d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (local congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (local congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (local congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring (global congestion metric).

in \leq *s paths* of the collection (*local* congestion metric).

- $d = n, s = 1 \implies$ paths **d** is joint in $V(D) \implies$ DDP.
- $d = n, s \ge 2 \implies$ congestion s in $V(D) \implies$ DDPC with congestion s.

- $d = n, s = 1 \implies$ paths **d**isjoint in $V(D) \implies$ DDP.
- $d = n, s \ge 2 \implies$ congestion s in $V(D) \implies$ DDPC with congestion s.
- $s = 0 \implies$ paths avoiding d vertices \implies Steiner Network.

for $0 < \alpha \leq 1$:

Hardness results

- NP-complete for $k \geq 3$, $d = n^{\alpha}$, fixed $s \geq 1$.
- W[1]-hard in DAGs with param. k, $d = n^{\alpha}$, fixed $s \ge 1$.
- W[1]-hard in DAGs with param. d, fixed $s \ge 0$.

for $0 < \alpha \leq 1$:

Hardness results

- NP-complete for $k \geq 3$, $d = n^{\alpha}$, fixed $s \geq 1$.
- W[1]-hard in DAGs with param. k, $d = n^{\alpha}$, fixed $s \ge 1$.
- W[1]-hard in DAGs with param. d, fixed $s \ge 0$.

Positive results (all for general digraphs)

- XP with params. k and dtw(D).
- XP with params. *d* and *s*.
- FPT with params. k, d and s.

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

To simplify the presentation, we consider that:

- *s* = 1;
- all terminals are distinct;
- $d^{-}(s_i) = 0$ and $d^{+}(t_i) = 0$.

• Reduction from 2-DDP.

- Reduction from 2-DDP.
- $c = n d \implies \leq c$ vertices in ≥ 2 paths.

• Reduction from 2-DDP.

• 2-DDP objective: Find pairwise disjoint paths.

- Reduction from 2-DDP.
- $c = n d \implies \leq c$ vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.

- Reduction from 2-DDP.
- $c = n d \implies \leq c$ vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t_2' and c vertices in $t_2 \rightarrow t_2'$ path.
- Add s₃, t₃, edges.

- Reduction from 2-DDP.
- $c = n d \implies \leq c$ vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t_2' and c vertices in $t_2 \rightarrow t_2'$ path.
- Add s₃, t₃, edges.
- DEDP requests: $\{(s_1, t_1), (s_2, t'_2), (s_3, t_3)\}$.

- Reduction from 2-DDP.
- $c = n d \implies \leq c$ vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.
- Add s₃, t₃, edges.
- DEDP requests: $\{(s_1, t_1), (s_2, t'_2), (s_3, t_3)\}$.
- $s_3 \rightarrow t_3$ path $\implies c$ congested vertices $\implies V(D) = \{ \text{disjoint part} \}.$

Kernelization algorithm overview

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```

```
Definition (Congested vertices)
```

A vertex v is *congested* if v *blocks* \geq 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_i to t_i in $D \setminus \{v\}$.

Goal: Find paths satisfying I and $|X| \ge d$ s.t. all $v \in X$ are not congested.

Kernelization algorithm overview

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```

```
Definition (Congested vertices)
```

A vertex v is congested if v blocks ≥ 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_i in $D \setminus \{v\}$.

- Goal: Find paths satisfying I and $|X| \ge d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```

```
Definition (Congested vertices)
```

A vertex v is *congested* if v *blocks* \geq 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_i to t_i in $D \setminus \{v\}$.

- Goal: Find paths satisfying I and $|X| \ge d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with k 1 requests (Iteration).

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_i in $D \setminus \{v\}$.

- Goal: Find paths satisfying I and $|X| \ge d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with k 1 requests (Iteration).
- Step 3: Solve *large clean* instances when k = 2 (Base).

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```

Definition (Congested vertices)

A vertex v is congested if v blocks ≥ 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_i in $D \setminus \{v\}$.

- Goal: Find paths satisfying I and $|X| \ge d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with k 1 requests (Iteration).
- Step 3: Solve *large clean* instances when k = 2 (Base).
- Step 4: Use Steps 2 and 3 to solve *clean* instances with $n \ge f(k, d)$.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \dots, (s_k, t_k)\}.$

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$.

Bypassing v

Delete v, add all arcs $N^-(v) \rightarrow N^+(v)$.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$.

Bypassing v

Delete v, add all arcs $N^-(v) \rightarrow N^+(v)$. *Bypass* $X \implies$ bypass *all* vertices in X. Denoted by D/X.

• Can't generate new congested vertices.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$.

Bypassing v

Delete v, add all arcs $N^-(v) \rightarrow N^+(v)$. Bypass $X \implies$ bypass all vertices in X. Denoted by D/X.

- Can't generate new congested vertices.
- Order is not important.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$.

Bypassing v

Delete v, add all arcs $N^-(v) \rightarrow N^+(v)$. Bypass $X \implies$ bypass all vertices in X. Denoted by D/X.

- Can't generate new congested vertices.
- Order is not important.
- Sol. for (D/X, I, k, d) is sol. for (D, I, k, d).

Step 1

Bypass all *congested* vertices to generate *clean* instance.

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^-(s_i) = d^+(t_i) = 0$, all terminals distinct.

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^-(s_i) = d^+(t_i) = 0$, all terminals distinct.

•
$$B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$$

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^{-}(s_i) = d^{+}(t_i) = 0$, all terminals distinct.

- $B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$
- $|B_i| \geq \frac{n}{k} + 1, \forall i$

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^{-}(s_i) = d^{+}(t_i) = 0$, all terminals distinct.

- $B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$
- $|B_i| \ge \frac{n}{k} + 1, \forall i$ $\implies \sum_{i \in [k]} |B_i| \ge n + 1 \implies \exists \text{ congested } v \implies \text{ctd.}$

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^{-}(s_i) = d^{+}(t_i) = 0$, all terminals distinct.

ctd.

•
$$B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$$

• $|B_i| \ge \frac{n}{k} + 1, \forall i$
 $\implies \sum_{i \in [k]} |B_i| \ge n + 1 \implies \exists \text{ congested } v \implies$

• $\exists |B_i| \leq \frac{n}{k}$.

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^{-}(s_i) = d^{+}(t_i) = 0$, all terminals distinct.

•
$$B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$$

•
$$|B_i| \ge \frac{n}{k} + 1, \forall i$$

 $\implies \sum_{i \in [k]} |B_i| \ge n + 1 \implies \exists \text{ congested } v \implies \text{ctd}$

• $\exists |B_i| \leq \frac{n}{k}$. - Bypass $B_i \implies 2$ internally disjoint $s_i \rightarrow t_i$ paths.

- $n = |V(D) {\text{sources}} {\text{terminals}}|.$
- Clean instance, s = 1, $d^{-}(s_i) = d^{+}(t_i) = 0$, all terminals distinct.

•
$$B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.$$

•
$$|B_i| \ge \frac{n}{k} + 1, \forall i$$

 $\implies \sum_{i \in [k]} |B_i| \ge n + 1 \implies \exists \text{ congested } v \implies \text{ctd}$

- $\exists |B_i| \leq \frac{n}{k}$.
 - Bypass $B_i \implies 2$ internally disjoint $s_i \rightarrow t_i$ paths.
 - Take shortest P_i from $s_i \rightarrow t_i$.

•
$$|V(D/B_i)| \geq \frac{n(k-1)}{k} \implies |V(D/(B_i \cup P_i))| \geq \frac{n(k-1)}{2k}.$$

Large clean instances

Lemma (Step 2 (Iteration))

(D, I, k, d) clean $\implies \exists P_i \text{ from } s_i \rightarrow t_i \text{ s.t. } |V(D/(B_i \cup P_i))| \geq \frac{n(k-1)}{2k}$.

Lemma (Step 3 (Base))

(D, I, k, d) clean, k = 2, $n \ge 4d \implies$ positive instance, solution in polynomial time.

- For large enough *n* :
 - Iterate Step 2 until k = 2.

Large clean instances

Lemma (Step 2 (Iteration))

(D, I, k, d) clean $\implies \exists P_i \text{ from } s_i \rightarrow t_i \text{ s.t. } |V(D/(B_i \cup P_i))| \geq \frac{n(k-1)}{2k}$.

Lemma (Step 3 (Base))

(D, I, k, d) clean, k = 2, $n \ge 4d \implies$ positive instance, solution in polynomial time.

- For large enough *n* :
 - Iterate Step 2 until k = 2.
 - Solve instance k = 2 using Step 3.

Large clean instances

Lemma (Step 2 (Iteration))

(D, I, k, d) clean $\implies \exists P_i \text{ from } s_i \rightarrow t_i \text{ s.t. } |V(D/(B_i \cup P_i))| \geq \frac{n(k-1)}{2k}$.

Lemma (Step 3 (Base))

(D, I, k, d) clean, k = 2, $n \ge 4d \implies$ positive instance, solution in polynomial time.

- For large enough *n* :
 - Iterate Step 2 until k = 2.
 - Solve instance k = 2 using Step 3.

Math Machine

• Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.

- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?

- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?
- Negative answer for s = 0 suffices.

- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?
- Negative answer for s = 0 suffices.
- Our result \implies kernel for Steiner Network with params. k and d = n c, where c is the size of the solution.

Disjoint Enough Paths: **Input:** Requests $I = \{(s_1, t_1), \dots, (s_k, t_k)\}$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \dots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring in $\leq s$

paths.

	Parameters		Generalizes		
	d = n, s = 1		Disjoint Paths		
	$d = n, s \ge 2$		Disjoint Paths with Congestion		estion
	$d\geq 1$, $s=0$		Steiner Network		
k		d	5	dtw	Complexity
fixed \geq 3		n^a	$fixed \ge 1$		NP-complete
parameter		n^{lpha}	$fixed \geq 1$	0	W[1]-hard
input		parameter	fixed ≥ 0		W[1]-hard
parameter			—	parameter	XP
input		parameter	parameter		XP
parameter		parameter	parameter		FPT

- Positive results for general digraphs.
- Kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel. Negative answer for s = 0 suffices.
- Consequence for Steiner Network particularly interesting.