R. Lopes 12 |. Sau 2

1Universidade Federal do Ceara, Brazil
2LIRMM, Université de Montpellier, France

August, 2020

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n")).

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).

O (nZk)

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).

O (nZk)

Poly time for fixed k.

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).
@ P € FPT = P can be solved in O (f(k) - n°).

O (nZk)

Poly time for fixed k.

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).
@ P € FPT = P can be solved in O (f(k) - n°).

O (n*) O (28 n?)

Poly time for fixed k.

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).
@ P € FPT = P can be solved in O (f(k) - n°).

O (n*) O (28 n?)

Poly time for fixed k. Poly exponent independent of k.

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).
e P € FPT = P can be solved in O (f(k) - n°).
@ P is W[1]-hard = strong evidence that P ¢ FPT.

@) (n2k) O (Qk . n2)

Poly time for fixed k. Poly exponent independent of k.

Problem P of size n with a parameter k:
e P €XP = P can be solved in O (g(k) - n"¥)).
@ P € FPT = P can be solved in O (f(k) - n°).
@ P is W[1]-hard = strong evidence that P & FPT.
o k-Clique € XP and is W[1]-hard.

O () O (2¢-)

Poly time for fixed k. Poly exponent independent of k.

Kernelization algorithm:

Kernelization algorithm:
Input: Instance (G, k) of P

Kernelization algorithm:
Input: Instance (G, k) of P
Output: In polynomial time, an instance (G', k') of P s.t.:

Kernelization algorithm:
Input: Instance (G, k) of P

Output: In polynomial time, an instance (G', k') of P s.t.:
o |G| + K < f(K).

size < f(k)

Kernelization algorithm:
Input: Instance (G, k) of P
Output: In polynomial time, an instance (G', k') of P s.t.:
o |G| + K < f(K).
o (G, k) = (G',K).

size < f(k)

Kernelization algorithm:
Input: Instance (G, k) of P
Output: In polynomial time, an instance (G', k') of P s.t.:
o |G| + K < f(K).
o (G, k) < (G',K).

o f(k) polynomial = Polynomial kernel for P.

size < f(k)

Kernelization algorithm:
Input: Instance (G, k) of P
Output: In polynomial time, an instance (G', k') of P s.t.:
o |G| + K < f(K).
o (G, k) < (G',K).

e f(k) polynomial = Polynomial kernel for P.

size < f(k)

A parameterized problem P has a kernel < P is FPT.

In a digraph D:

Input: Set of requests | = {(s1,t1),...,(Sk, tk)}-

In a digraph D:

Input: Set of requests | = {(s1,t1),..., (S, tk)}-

Output: Collection of paths P = {Px,..., Px} satisfying | under some
restriction.

In a digraph D:

Input: Set of requests | = {(s1,t1),..., (S, tk)}-

Output: Collection of paths P = {Px,..., Px} satisfying | under some
restriction.

= k-Directed Disjoint Paths (k-DDP).

In a digraph D:

Input: Set of requests | = {(s1,t1),..., (S, tk)}-

Output: Collection of paths P = {Px,..., Px} satisfying | under some
restriction.

= (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

¢ = 2 in the example.

In a digraph D:

Input: Set of requests | = {(s1,t1),..., (S, tk)}-

Output: Collection of paths P = {Px,..., Px} satisfying | under some
restriction.

= (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

o NP-complete for k = 2.

S. Fortune and J.E. Hopcroft and J. Wyllie.
The directed subgraph homeomorphism problem
Theoretical Computer Science, 10, 1980

o NP-complete for k = 2.
@ XP in DAGs.

S. Fortune and J.E. Hopcroft and J. Wyllie.
The directed subgraph homeomorphism problem
Theoretical Computer Science, 10, 1980

k-DDP
@ NP-complete for k = 2.
@ XP in DAGs.
e W[1]-hard in DAGs.

@ A. Slivkins
Parameterized Tractability of Edge-Disjoint Paths on Directed
Acyclic Graphs
SIAM Journal on Discrete Mathematics 24.1, 2010

k-DDP
@ NP-complete for k = 2.
@ XP in DAGs.
e WI[1]-hard in DAGs.
e XP in bounded dtw (param. k + dtw(D)).

@ T. Johnson and N. Robertson and P.D. Seymour and R. Thomas,
Directed tree-width
Journal of Combinatorial Theory, Series B, Volume 82, Issue 1,
2001, Pages 138-154

k-DDP
@ NP-complete for k = 2.
@ XP in DAGs.
e WI[1]-hard in DAGs.
@ XP in bounded dtw (param. k + dtw(D)).

(k,c)-DDPC
e W(1]-hard in DAGs.

Extension of Slivkins reduction, and improved upon.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP
@ NP-complete for k = 2.
@ XP in DAGs.
e WI[1]-hard in DAGs.
@ XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC
e WI[1]-hard in DAGs.
@ XP in DAGs.

Easy reduction to the disjoint case.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP
@ NP-complete for k = 2.
@ XP in DAGs.
e WI[1]-hard in DAGs.
@ XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC
e WI[1]-hard in DAGs.
e XP in DAGs.
o XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP (all hold for edge disjoint)
@ NP-complete for k = 2.
e XP in DAGs.
e W[1]-hard in DAGs.
e XP in bounded dtw (param. k + dtw(D)).

(k, c)-DDPC (all hold for edge congestion)
e W[1]-hard in DAGs.

e XP in DAGs.
o XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

k-DDP (all hold for edge disjoint)

@ NP-complete for k = 2.

e XP in DAGs.

e W(1]-hard in DAGs.

e XP in bounded dtw (param. k + dtw(D)).
(k, c)-DDPC (all hold for edge congestion)

e W(1]-hard in DAGs.

e XP in DAGs.
o XP in bounded bounded dtw (param. k + dtw(D)).

Easy reduction to the disjoint case.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

@ k-DDP is FPT in planar digraphs.

@ Cygan, M., Marx, D., Pilipczuk, M. and Pilipczuk, M.
The planar directed k-vertex-disjoint paths problem is
fixed-parameter tractable
In Proc. of the IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), 2013

@ k-DDP is FPT in planar digraphs.

@ k-DDPC is XP in (36k> + 2k)-stronlgy connected digraphs for
c=2.

ﬁ Edwards, K., Muzi, |. and Wollan, P.
Half-integral linkages in highly connected directed graphs
In Proc. of the 25th Annual European Symposium on Algorithms
(ESA), 2017

@ k-DDP is FPT in planar digraphs.

e k-DDPC is XP in (36k> + 2k)-stronlgy connected digraphs for
c=2.

o DDPC is XP with param d = k — ¢ in DAGs.

@ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R.
Routing with congestion in acyclic digraphs
Information Processing Letters (151), 2019

@ Congestion c.

ed=k-—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w FPT on k - — =
DDPC XPonk,XPond | XPonk+w | FPTon k | XPon k forc =2

@ Congestion c.

ed=k-—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w FPT on k - — =
DDPC XPonk,XPond | XPonk+w | FPTon k | XPon k forc =2

o What about general digraphs?
@ Asymmetric version that either outputs a

@ Congestion c.

ed=k-—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w FPT on k - — =
DDPC XPonk,XPond | XPonk+w | FPTon k | XPon k forc =2

o What about general digraphs?
@ Asymmetric version that either outputs a
- positive answer for DDPC; or

@ Congestion c.

ed=k-—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w FPT on k - — =
DDPC XPonk,XPond | XPonk+w | FPTon k | XPon k forc =2

o What about general digraphs?
@ Asymmetric version that either outputs a

- positive answer for DDPC; or
- negative answer for DDP.

Summary of positive results

@ Congestion c.

ed=k-—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w FPT on k _——
DDPC XPonk, XPond | XPonk+w | FPTon k | XPon k forc=2

e What about general digraphs?

@ Asymmetric version that either outputs a
- positive answer for DDPC; or

- negative answer for DDP.

- XP for ¢ = 3 (uses Directed Grid Theorem).

H K Kawarabayashi and S. Kreutzer.
The Directed Grid Theorem
Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing

Summary of positive results

e Congestion c.

ed=k—c.

. Digraph DAG dtw < w Planar Strong
Version
DDP XP on k XPon k+w | FPT on k - — =
DDPC XPonk, XPond | XPonk+w | FPTon k | XPon k forc=2

e What about general digraphs?

@ Asymmetric version that either outputs a
- positive answer for DDPC; or

- negative answer for DDP.

- XP for ¢ = 3 (uses Directed Grid Theorem).

We bring positive news for general digraphs.

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tk)}, integers d and s.

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.
> d vertices occurring (global congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.
> d vertices occurring (global congestion metric).
in <'s paths of the collection (local congestion metric).

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.
> d vertices occurring (global congestion metric).
in <'s paths of the collection (local congestion metric).

S1@ L Xal

[X)

>~
N

(J 7

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.
> d vertices occurring (global congestion metric).
in <'s paths of the collection (local congestion metric).

S1@ L Xal

[X)

(J 7

S~

"> = negative instance DDPC (¢ < 2)

The Disjoin Enough Paths problem

- Paths be disjoint in a large part of the digraph.

Input: Requests | = {(s1,t1),...,(Sk, tx)}, integers d and s.
Output: P = {Py,..., Py} satisfying | s.t.
> d vertices occurring (global congestion metric).
in <'s paths of the collection (local congestion metric).

S|@® L Xal
> == positive for DEDP (4 <n-55>1)

S ! [X)
5 congested
/—/%

53

-

o 13
(J 7

"> = negative instance DDPC (¢ < 2)

Input: Requests | = {(s1,t1),...,(sk, tx)}, integers d and s.
Output: P = {Ps,..., P} satistying | s.t.

> d vertices occurring in < s paths.

Input: Requests | = {(s1,t1),...,(sk, tx)}, integers d and s.
Output: P = {Ps,..., P} satistying | s.t.

> d vertices occurring in < s paths.

NI
o

‘> = sol. fors =3

Input: Requests | = {(s1,t1),...,(sk, tx)}, integers d and s.
Output: P = {Ps,..., P} satisfying | s.t.

> d vertices occurring in < s paths.

NI
o

‘> = sol. fors =3

@ d=n,s=1 = paths disjoint in V(D) = DDP.
@ d=n,s>2 = congestion s in V(D) = DDPC with
congestion s.

Input: Requests | = {(s1,t1),...,(sk, tx)}, integers d and s.
Output: P = {Ps,..., P} satistying | s.t.

> d vertices occurring in < s paths.

“ = sol fors=3 > — sol fors=0

@ d=n,s=1 = paths disjoint in V(D) = DDP.

e d=n,s>2 = congestion s in V(D) = DDPC with
congestion s.

@ s =0 = paths avoiding d vertices = Steiner Network.

for0<a<1:

@ NP-complete for k > 3, d = n®, fixed s > 1.
@ W([1]-hard in DAGs with param. k, d = n®, fixed s > 1.
o WI[1]-hard in DAGs with param. d, fixed s > 0.

for0<a<1:

@ NP-complete for k > 3, d = n®, fixed s > 1.
@ W([1]-hard in DAGs with param. k, d = n®, fixed s > 1.
o WI[1]-hard in DAGs with param. d, fixed s > 0.

e XP with params. k and dtw(D).
@ XP with params. d and s.
o FPT with params. k, d and s.

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

@ ———— | Input digraph

Set of requests
(O—

{(s1,t1), ..., (sk, te)}
®

@—»’ Global congestion metric ‘

@—»’ Local congestion metric ‘

DEDP instances

Instance (D, I, k, d, s) where:

@ Pt Cigrap To simplify the presentation, we

@ Set of requests consider that:

{(s1,10)s -, (ks)}
®

@—»‘ Global congestion metric ‘

@—»‘ Local congestion metric ‘

Goal: Find collection of paths satisfying | s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I, k, d, s) where:

@ Pt Cigrap To simplify the presentation, we

@ Set of requests consider that:

{(51,t1),»--,(5k,tk)} es—1
®

@—»‘ Global congestion metric ‘

@—»‘ Local congestion metric ‘

Goal: Find collection of paths satisfying | s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I, k, d, s) where:

@ Pt Cigrap To simplify the presentation, we

@ Set of requests consider that:

{(s1,10)s -, (ks)} es=1;

k=11| @ all terminals are distinct;

@—»‘ Global congestion metric ‘

@—»‘ Local congestion metric ‘

Goal: Find collection of paths satisfying | s.t. at least d vertices occur in
at most s paths of the collection.

DEDP instances

Instance (D, I, k, d, s) where:

@ Pt Cigrap To simplify the presentation, we

@ Set of requests consider that:

{(s1,t1), ..., (sk, te)} o s—1
@ k=111 @ all terminals are distinct;
@—»‘ Global congestion metric ‘

@ d(s;))=0and d(t) =0.

@—»‘ Local congestion metric ‘

Goal: Find collection of paths satisfying | s.t. at least d vertices occur in
at most s paths of the collection.

@ Reduction from 2-DDP.

@ Reduction from 2-DDP.
@ c=n—d = < ¢ vertices in > 2 paths.

V(D)
S1 t
[] []
[] []

@ Reduction from 2-DDP.
@ c=n—d — < c vertices in > 2 paths.
V(D)

S1 t
AVAVAVES
AVAVAVaS:
S2 to

@ 2-DDP objective: Find pairwise disjoint paths.

@ Reduction from 2-DDP.
@ c=n—d — < c vertices in > 2 paths.

V(D)
51 //\\ // \\ ,‘\ tl
o SN e
v/ \ s <
N VS 0
o SN e - ty
S N AN Y to I

{vi,ooo, v}

@ 2-DDP objective: Find pairwise disjoint paths.
o Add t) and c vertices in to — t} path.

@ Reduction from 2-DDP.
@ c=n—d — < c vertices in > 2 paths.

@ 2-DDP objective: Find pairwise disjoint paths.
o Add t) and c vertices in to — t} path.
o Add s3, t3, edges.

DEDP is NP-complete for fixed k = 3

@ Reduction from 2-DDP.
@ c=n—d — < c vertices in > 2 paths.

53

@ 2-DDP objective: Find pairwise disjoint paths.
e Add t) and c vertices in t; — t} path.

o Add ss, t3, edges.

o DEDP requests: {(s1,t1), (s2,t5), (s3,13)}.

DEDP is NP-complete for fixed k = 3

@ Reduction from 2-DDP.
@ c=n—d — < c vertices in > 2 paths.

53

2-DDP objective: Find pairwise disjoint paths.

Add t} and c vertices in t, — t} path.

Add s3, t3, edges.

DEDP requests: {(s1,t1), (52, t5), (s3, t3)}.

s3 — t3 path = c congested vertices = V(D) = {disjoint
part}.

Instance (D, I, k,d) (s =1 omitted).

A vertex v is congested if v blocks > 2 requests. That is, 3i,j s.t. i #
and there is no path from s; to t; and no path from s; to t; in D\ {v}.

Goal: Find paths satisfying / and |X| > d s.t. all v € X are not
congested.

Instance (D, I, k,d) (s =1 omitted).

A vertex v is congested if v blocks > 2 requests. That is, 3i,j s.t. i #
and there is no path from s; to t; and no path from s; to t; in D\ {v}.

Goal: Find paths satisfying / and |X| > d s.t. all v € X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.

Instance (D, I, k,d) (s =1 omitted).

A vertex v is congested if v blocks > 2 requests. That is, 3i,j s.t. i #
and there is no path from s; to t; and no path from s; to t; in D\ {v}.

Goal: Find paths satisfying / and |X| > d s.t. all v € X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.

Step 2: Reduce clean instance with k requests to clean instance with k — 1
requests (Iteration).

Kernelization algorithm overview

Instance (D, I, k,d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks > 2 requests. That is, 3i,j s.t. i #
and there is no path from s; to t; and no path from s; to t; in D\ {v}.

Goal: Find paths satisfying / and |X| > d s.t. all v € X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.

Step 2: Reduce clean instance with k requests to clean instance with k — 1
requests (Iteration).

Step 3: Solve large clean instances when k = 2 (Base).

Kernelization algorithm overview

Instance (D, I, k,d) (s = 1 omitted).

Definition (Congested vertices)

A vertex v is congested if v blocks > 2 requests. That is, 3i,j s.t. i #
and there is no path from s; to t; and no path from s; to t; in D\ {v}.

Goal: Find paths satisfying / and |X| > d s.t. all v € X are not
congested.

Step 1: Compute clean (free of congested vertices) instance from original.

Step 2: Reduce clean instance with k requests to clean instance with k — 1
requests (Iteration).

Step 3: Solve large clean instances when k = 2 (Base).

Step 4: Use Steps 2 and 3 to solve clean instances with n > f(k, d).

- Instance (D, I, k,d) of DEDP, I = {(s1,t1),...,(Sk, tx)}

- Instance (D, I, k,d) of DEDP, I = {(s1,t1),...,(Sk, tx)}

Delete v, add all arcs N~ (v) — N*(v).

- Instance (D, I, k,d) of DEDP, I = {(s1,t1),...,(Sk, tx)}

Delete v, add all arcs N~ (v) — N*(v).
Bypass X = bypass all vertices in X. Denoted by D/X.

o Can't generate new congested vertices.

- Instance (D, I, k,d) of DEDP, I = {(s1,t1),...,(Sk, tx)}

Delete v, add all arcs N~ (v) — N*(v).
Bypass X = bypass all vertices in X. Denoted by D/X.

o Can't generate new congested vertices.
@ Order is not important.

- Instance (D, I, k,d) of DEDP, I = {(s1,t1),...,(Sk, tx)}

Delete v, add all arcs N~ (v) — N*(v).
Bypass X = bypass all vertices in X. Denoted by D/X.

o Can't generate new congested vertices.
@ Order is not important.
e Sol. for (D/X,1,k,d) is sol. for (D, 1, k,d).

Bypass all congested vertices to generate clean instance.

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

o B ={v|(si,t;) is blocked by v}.

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

o B ={v| (si,t;) is blocked by v}.
o |B|> 241,V

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

o B ={v| (si,t;) is blocked by v}.
o |B|> 241,V

— > |B|>n+1 = 3 congested v. —> ctd.
i€[K]

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

B;

—
SiO—o—o—o—Con

o B ={v| (si,t;) is blocked by v}.
o |B|> 241,V

= > |B|>n+1 = 3 congested v.—> ctd.
i€[K]

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

—
S CQ—Q—Q—Q—C ot s ot

o B ={v| (si,t;) is blocked by v}.
o |B|> 241,V

= > |B|>n+1 = 3 congested v.—> ctd.
i€[k]

e J|B| < £.
- Bypass Bi = 2 internally disjoint s; — t; paths.

e n=|V(D) — {sources} — {terminals}|.
o Clean instance, s =1, d~(s;) = d*(t;) = 0, all terminals distinct.

B;

—
si C’—O—O—O—C ot Si o

o B ={v| (si,t;) is blocked by v}.
o |B|> 241,V

= > |B|>n+1 = 3 congested v.—> ctd.
i€[k]

e J|B| < £.
- Bypass Bi = 2 internally disjoint s; — t; paths.
- Take shortest P; from s; — t;.

o |[V(D/B)| > ") — |V(D/(B;U Py))| > "

n(k—1
(D, 1,k,d) clean = 3P; from s; — t; s.t. [V(D/(B;U P;)] > 1.

(D, I, k,d) clean, k =2, n > 4d = positive instance, solution in
polynomial time.

- For large enough n :
o Iterate Step 2 until k = 2.

n(k—1
(D, 1,k,d) clean = 3P; from s; — t; s.t. [V(D/(B;U P;)] > 1.

(D, I, k,d) clean, k =2, n > 4d = positive instance, solution in
polynomial time.

- For large enough n :
o lterate Step 2 until k = 2.
@ Solve instance k = 2 using Step 3.

n(k—1
(D, 1,k,d) clean = 3P; from s; — t; s.t. [V(D/(B;U P;)] > 1.

(D, I, k,d) clean, k =2, n > 4d = positive instance, solution in
polynomial time.

- For large enough n :
o lterate Step 2 until k = 2.
@ Solve instance k = 2 using Step 3.

StepQﬁ | /—\

Step 3 >d -2kl k

—

positive, sol. in polynomial time

Math Machine

@ Real kernel size: d - 2k—s. (’;) + 2k.

o Real kernel size: d -2k . (l;) + 2k.
@ Open: Poly-kernel?

o Real kernel size: d -2k . (l;) + 2k.
@ Open: Poly-kernel?

@ Negative answer for s = 0 suffices.

Real kernel size: d - 2k—s. (ls‘) + 2k.
Open: Poly-kernel?
Negative answer for s = 0 suffices.

Our result = kernel for Steiner Network with params. k and
d = n — ¢, where c is the size of the solution.

Disjoint Enough Paths:
Input: Requests | = {(s1,t1),...,(sk, tx)}, integers d and s.

Output: P = {Py,..., Py} satisfying | s.t. > d vertices occurring in < s
paths.
Parameters Generalizes
d=ns=1 Disjoint Paths
d = n, s > 2 | Disjoint Paths with Congestion
d>1,s=0 Steiner Network
k d s dtw Complexity
fixed > 3 n® fixed >1 — NP-complete
parameter n® fixed > 1 0 W][1]-hard
input parameter | fixed >0 — W(1]-hard
parameter — — parameter | XP
input parameter | parameter — XP
parameter | parameter | parameter — FPT

Positive results for general digraphs.
Kernel size: d - 2K=5 - (%) + 2k.

Open: Poly-kernel. Negative answer for s = 0 suffices.

Consequence for Steiner Network particularly interesting.

