A relaxation of the Directed Disjoint Paths problem: a global congestion metric helps

R. Lopes $1,2$ I. Sau 2

¹Universidade Federal do Ceará, Brazil ²LIRMM, Université de Montpellier, France

August, 2020

Problem P of size *n* with a parameter k :

 $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$

Examples

Problem P of size *n* with a parameter k :

 $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$

Examples $\mathcal{O}(n^{2k})$

Problem P of size *n* with a parameter k :

 $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$

Examples $\mathcal{O}(n^{2k})$ Poly time for fixed k.

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.
- P is W[1]-hard \implies strong evidence that P \notin FPT.

Problem P of size *n* with a parameter k :

- $\mathcal{P} \in \mathsf{XP} \implies \mathcal{P}$ can be solved in $\mathcal{O}(g(k) \cdot n^{f(k)}).$
- $\mathcal{P} \in \mathsf{FPT} \implies \mathcal{P}$ can be solved in $\mathcal{O}(f(k) \cdot n^c)$.
- P is W[1]-hard \implies strong evidence that P \notin FPT.
- k -Clique \in XP and is W[1]-hard.

Examples

 $\mathcal{O}(n^{2k})$

 $\mathcal{O}\left(2^k \cdot n^2\right)$

Poly time for fixed k.

Poly exponent independent of k.

Kernelization algorithm:

Kernelization algorithm: **Input:** Instance (G, k) of P

Kernelization algorithm:

Input: Instance (G, k) of P

Output: In polynomial time, an instance (G', k') of P s.t.:

Kernelization algorithm:

Input: Instance (G, k) of P

Output: In polynomial time, an instance (G',k') of $\mathcal P$ s.t.:

 $|G'| + k' \leq f(k).$

Kernelization algorithm:

Input: Instance (G, k) of P

Output: In polynomial time, an instance (G',k') of $\mathcal P$ s.t.:

\n- $$
|G'| + k' \leq f(k)
$$
\n- $(G, k) \iff (G', k')$
\n

Kernelization algorithm:

Input: Instance (G, k) of P

Output: In polynomial time, an instance (G',k') of $\mathcal P$ s.t.:

\n- $$
|G'| + k' \leq f(k)
$$
.
\n- $(G, k) \iff (G', k')$.
\n

• $f(k)$ polynomial \implies Polynomial kernel for \mathcal{P} .

Kernelization algorithm:

Input: Instance (G, k) of P

Output: In polynomial time, an instance (G',k') of $\mathcal P$ s.t.:

\n- $$
|G'| + k' \leq f(k)
$$
.
\n- $(G, k) \iff (G', k')$.
\n

• $f(k)$ polynomial \implies Polynomial kernel for \mathcal{P} .

Theorem

A parameterized problem $\mathcal P$ has a kernel $\iff \mathcal P$ is FPT.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Output: Collection of paths $P = \{P_1, \ldots, P_k\}$ satisfying I under some restriction.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Output: Collection of paths $P = \{P_1, \ldots, P_k\}$ satisfying I under some restriction.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Output: Collection of paths $P = \{P_1, \ldots, P_k\}$ satisfying I under some restriction.

 $c = 2$ in the example.

In a digraph D:

Input: Set of *requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Output: Collection of paths $P = \{P_1, \ldots, P_k\}$ satisfying I under some restriction.

Every vertex in $\leq c$ paths.

 \implies (k, c)-Directed Disjoint Paths with Congestion ((k, c)-DDPC).

• NP-complete for $k = 2$.

S. Fortune and J.E. Hopcroft and J. Wyllie. The directed subgraph homeomorphism problem Theoretical Computer Science, 10, 1980

- NP-complete for $k = 2$.
- XP in DAGs.

S. Fortune and J.E. Hopcroft and J. Wyllie. The directed subgraph homeomorphism problem Theoretical Computer Science, 10, 1980

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.

A. Slivkins

Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs SIAM Journal on Discrete Mathematics 24.1, 2010

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + d$ tw(D)).

T. Johnson and N. Robertson and P.D. Seymour and R. Thomas, S. Directed tree-width Journal of Combinatorial Theory, Series B, Volume 82, Issue 1, 2001, Pages 138-154

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + d$ tw(D)).

 (k, c) -DDPC

```
W[1]-hard in DAGs.
```
Extension of Slivkins reduction, and improved upon.

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + d$ tw(D)).

(k, c) -DDPC

- W[1]-hard in DAGs.
- XP in DAGs.

Easy reduction to the disjoint case.

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + d$ tw(D)).

(k, c) -DDPC

- W[1]-hard in DAGs.
- XP in DAGs.
- XP in bounded bounded dtw (param. $k + d$ tw (D)).

Easy reduction to the disjoint case.

k-DDP (all hold for edge disjoint)

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + dtw(D)$).

 (k, c) -DDPC (all hold for edge congestion)

- W[1]-hard in DAGs.
- XP in DAGs.
- XP in bounded bounded dtw (param. $k + d$ tw (D)).

Easy reduction to the disjoint case.

k-DDP (all hold for edge disjoint)

- NP-complete for $k = 2$.
- XP in DAGs.
- W[1]-hard in DAGs.
- XP in bounded dtw (param. $k + dtw(D)$).

 (k, c) -DDPC (all hold for edge congestion)

- W[1]-hard in DAGs.
- XP in DAGs.
- XP in bounded bounded dtw (param. $k + d$ tw (D)).

Easy reduction to the disjoint case.

\bullet k-DDP is FPT in planar digraphs.

Cygan, M., Marx, D., Pilipczuk, M. and Pilipczuk, M. The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable In Proc. of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), 2013

- \bullet k-DDP is FPT in planar digraphs.
- *k*-DDPC is XP in $(36k^3 + 2k)$ -stronlgy connected digraphs for $c = 2$.

記 Edwards, K., Muzi, I. and Wollan, P. Half-integral linkages in highly connected directed graphs In Proc. of the 25th Annual European Symposium on Algorithms (ESA), 2017

- \bullet k-DDP is FPT in planar digraphs.
- k-DDPC is XP in $(36k^3 + 2k)$ -stronlgy connected digraphs for $c = 2$.
- DDPC is XP with param $d = k c$ in DAGs.
- Ħ Amiri, S., Kreutzer, S., Marx, D. and Rabinovich, R. Routing with congestion in acyclic digraphs Information Processing Letters (151), 2019

Summary of positive results

- Congestion c.
- \bullet $d = k c$.

Summary of positive results

- Congestion c.
- \bullet d = k c.

- What about *general* digraphs?
- Asymmetric version that either outputs a

Summary of positive results

- Congestion c.
- \bullet d = k c.

- What about *general* digraphs?
- Asymmetric version that either outputs a
	- *positive answer* for DDPC; or
Summary of positive results

- Congestion c.
- \bullet d = k c.

- What about *general* digraphs?
- Asymmetric version that either outputs a
	- *positive answer* for DDPC; or
	- negative answer for DDP.

Summary of positive results

- \bullet Congestion c .
- \bullet d = k c.

- What about *general* digraphs?
- Asymmetric version that either outputs a
	- *positive answer* for DDPC; or
	- negative answer for DDP.
	- XP for $c = 3$ (uses Directed Grid Theorem).
- 晶 K. Kawarabayashi and S. Kreutzer. The Directed Grid Theorem Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing

Summary of positive results

- \bullet Congestion c .
- \bullet d = k c.

- What about *general* digraphs?
- Asymmetric version that either outputs a
	- *positive answer* for DDPC; or
	- negative answer for DDP.
	- XP for $c = 3$ (uses Directed Grid Theorem).

We bring positive news for general digraphs.

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s.

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t.

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $> d$ vertices occurring (global congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $> d$ vertices occurring (global congestion metric). $in < s$ paths of the collection (local congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (local congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (*local* congestion metric).

- Paths be disjoint in a large part of the digraph.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $> d$ vertices occurring (global congestion metric). in $\leq s$ paths of the collection (*local* congestion metric).

Input: *Requests I* = { $(s_1, t_1), \ldots, (s_k, t_k)$ }, integers *d* and *s*. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring in $\leq s$ paths.

Input: *Requests* $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. Output: $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring in $\leq s$ paths.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $> d$ vertices occurring in $\leq s$ paths.

- $d = n$, $s = 1 \implies$ paths disjoint in $V(D) \implies DDP$.
- $d = n, s \ge 2 \implies$ congestion s in $V(D) \implies DDPC$ with congestion s.

Input: Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $P = \{P_1, \ldots, P_k\}$ satisfying I s.t. $> d$ vertices occurring in $\leq s$ paths.

- \bullet $d = n, s = 1 \implies$ paths disjoint in $V(D) \implies DDP$.
- $d = n, s \geq 2 \implies$ congestion s in $V(D) \implies DDPC$ with congestion s.
- $s = 0 \implies$ paths avoiding d vertices \implies Steiner Network.

for $0 < \alpha \leq 1$:

Hardness results

- NP-complete for $k \geq 3$, $d = n^{\alpha}$, fixed $s \geq 1$.
- W[1]-hard in DAGs with param. $k, d = n^{\alpha}$, fixed $s \ge 1$.
- \bullet W[1]-hard in DAGs with param. d, fixed $s \geq 0$.

for $0 < \alpha \leq 1$:

Hardness results

- NP-complete for $k \geq 3$, $d = n^{\alpha}$, fixed $s \geq 1$.
- W[1]-hard in DAGs with param. $k, d = n^{\alpha}$, fixed $s \ge 1$.
- \bullet W[1]-hard in DAGs with param. d, fixed $s \geq 0$.

Positive results (all for general digraphs)

- XP with params. k and dtw(D).
- XP with params. d and s.
- \bullet FPT with params. k , d and s .

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

Instance (D, I, k, d, s) where:

To simplify the presentation, we consider that:

- $s = 1$:
- all terminals are distinct:
- $d^-(s_i) = 0$ and $d^+(t_i) = 0$.

• Reduction from 2-DDP.

• $c = n - d \implies c$ vertices in ≥ 2 paths.

• Reduction from 2-DDP.

•
$$
c = n - d \implies c
$$
 vertices in ≥ 2 paths.

2-DDP objective: Find pairwise disjoint paths.

•
$$
c = n - d \implies c
$$
 vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.

•
$$
c = n - d \implies c
$$
 vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.
- Add s_3 , t_3 , edges.

•
$$
c = n - d \implies c
$$
 vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.
- \bullet Add s_3 , t_3 , edges.
- DEDP requests: $\{(s_1, t_1), (s_2, t'_2), (s_3, t_3)\}.$

•
$$
c = n - d \implies c
$$
 vertices in ≥ 2 paths.

- 2-DDP objective: Find pairwise disjoint paths.
- Add t'_2 and c vertices in $t_2 \rightarrow t'_2$ path.
- \bullet Add s_3 , t_3 , edges.
- DEDP requests: $\{(s_1, t_1), (s_2, t'_2), (s_3, t_3)\}.$
- $s_3 \rightarrow t_3$ path \implies c congested vertices \implies $V(D) = \{$ disjoint part}.

Kernelization algorithm overview

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```
Definition (Congested vertices)

A vertex v is congested if v blocks > 2 requests. That is, $\exists i, j$ s.t. $i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_j in $D\setminus\{\nu\}.$

Goal: Find paths satisfying I and $|X| > d$ s.t. all $v \in X$ are not congested.

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```
A vertex v is congested if v blocks > 2 requests. That is, $\exists i, j$ s.t. $i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_j in $D\setminus\{\nu\}.$

- Goal: Find paths satisfying *I* and $|X| > d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```
A vertex v is congested if v blocks > 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_j in $D\setminus\{\nu\}.$

- Goal: Find paths satisfying *I* and $|X| > d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with $k 1$ requests (Iteration).

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```
A vertex v is congested if v blocks > 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_j in $D\setminus\{\nu\}.$

- Goal: Find paths satisfying *I* and $|X| > d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with $k 1$ requests (Iteration).
- Step 3: Solve *large clean* instances when $k = 2$ (Base).

```
Instance (D, I, k, d) (s = 1 \text{ omitted}).
```
A vertex v is congested if v blocks > 2 requests. That is, $\exists i, j \text{ s.t. } i \neq j$ and there is no path from s_i to t_i and no path from s_j to t_j in $D\setminus\{\nu\}.$

- Goal: Find paths satisfying *I* and $|X| > d$ s.t. all $v \in X$ are not congested.
- Step 1: Compute *clean* (free of congested vertices) instance from original.
- Step 2: Reduce *clean* instance with k requests to *clean* instance with $k 1$ requests (Iteration).
- Step 3: Solve *large clean* instances when $k = 2$ (Base).
- Step 4: Use Steps 2 and 3 to solve *clean* instances with $n \ge f(k, d)$.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Bypassing v

Delete v, add all arcs $N^-(v) \to N^+(v)$.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Bypassing v

Delete v, add all arcs $N^-(v) \to N^+(v)$. Bypass $X \implies$ bypass all vertices in X. Denoted by D/X .

Can't generate new congested vertices.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Bypassing v

Delete v, add all arcs $N^-(v) \to N^+(v)$. Bypass $X \implies$ bypass all vertices in X. Denoted by D/X .

- Can't generate new congested vertices.
- Order is not important.

Bypassing and clean instances.

- Instance (D, I, k, d) of DEDP, $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}.$

Bypassing v

Delete v, add all arcs $N^-(v) \to N^+(v)$. Bypass $X \implies$ bypass all vertices in X. Denoted by D/X .

- Can't generate new congested vertices.
- Order is not important.
- Sol. for $(D/X, I, k, d)$ is sol. for (D, I, k, d) .

Step 1

Bypass all congested vertices to generate clean instance.

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

•
$$
B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.
$$

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

- $B_i = \{v \mid (s_i, t_i)$ is *blocked* by $v\}$.
- $|B_i| \geq \frac{n}{k} + 1, \forall i$

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

- $B_i = \{v \mid (s_i, t_i)$ is *blocked* by $v\}$.
- $|B_i| \geq \frac{n}{k} + 1, \forall i$ $\implies \sum_{i \in [k]} |B_i| \geq n+1 \implies \exists \text{ congested } v \implies \text{ctd}.$

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

\n- $$
B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}
$$
.
\n- $|B_i| \geq \frac{n}{k} + 1, \forall i$
\n- $\sum_{i \in [k]} |B_i| \geq n + 1 \implies \exists$ *congested* $v \implies \text{ctd}$.
\n

 $\exists |B_i| \leq \frac{n}{k}.$

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

•
$$
B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.
$$

$$
\begin{array}{ll}\n\bullet \ |B_i| \geq \frac{n}{k} + 1, \forall i \\
\implies \sum_{i \in [k]} |B_i| \geq n+1 \implies \exists \text{ congested } v \implies \text{ctd.}\n\end{array}
$$

 $\exists |B_i| \leq \frac{n}{k}.$ - Bypass $B_i \implies 2$ internally disjoint $s_i \rightarrow t_i$ paths.

- $n = |V(D) \{\text{sources}\} \{\text{terminals}\}|.$
- Clean instance, $s=1, d^-(s_i)=d^+(t_i)=0$, all terminals distinct.

•
$$
B_i = \{v \mid (s_i, t_i) \text{ is blocked by } v\}.
$$

$$
\begin{array}{ll}\n\bullet \ |B_i| \geq \frac{n}{k} + 1, \forall i \\
\implies \sum_{i \in [k]} |B_i| \geq n+1 \implies \exists \text{ congested } v \implies \text{ctd.}\n\end{array}
$$

 $\exists |B_i| \leq \frac{n}{k}.$ - Bypass $B_i \implies 2$ internally disjoint $s_i \rightarrow t_i$ paths. - Take shortest P_i from $s_i \rightarrow t_i$.

$$
\bullet \ |V(D/B_i)| \geq \frac{n(k-1)}{k} \implies |V(D/(B_i \cup P_i))| \geq \frac{n(k-1)}{2k}.
$$

Large clean instances

Lemma (Step 2 (Iteration))

 (D, I, k, d) clean $\implies \exists P_i$ from $s_i \rightarrow t_i$ s.t. $|V(D/(B_i \cup P_i)| \geq \frac{n(k-1)}{2k})$.

Lemma (Step 3 (Base))

 (D, I, k, d) clean, $k = 2$, $n \geq 4d \implies$ positive instance, solution in polynomial time.

- For large enough n :
	- Iterate Step 2 until $k = 2$.

Large clean instances

Lemma (Step 2 (Iteration))

 (D, I, k, d) clean $\implies \exists P_i$ from $s_i \rightarrow t_i$ s.t. $|V(D/(B_i \cup P_i)| \geq \frac{n(k-1)}{2k})$.

Lemma (Step 3 (Base))

 (D, I, k, d) clean, $k = 2$, $n \geq 4d \implies$ positive instance, solution in polynomial time.

- For large enough n :
	- Iterate Step 2 until $k = 2$.
	- Solve instance $k = 2$ using Step 3.

Large clean instances

Lemma (Step 2 (Iteration))

 (D, I, k, d) clean $\implies \exists P_i$ from $s_i \rightarrow t_i$ s.t. $|V(D/(B_i \cup P_i)| \geq \frac{n(k-1)}{2k})$.

Lemma (Step 3 (Base))

 (D, I, k, d) clean, $k = 2$, $n > 4d \implies$ positive instance, solution in polynomial time.

- For large enough *n* :
	- Iterate Step 2 until $k = 2$.
	- Solve instance $k = 2$ using Step 3.

Math Machine

Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.

- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?
- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?
- Negative answer for $s = 0$ suffices.
- Real kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel?
- Negative answer for $s = 0$ suffices.
- Our result \implies kernel for Steiner Network with params. k and $d = n - c$, where c is the size of the solution.

Disjoint Enough Paths: **Input:** Requests $I = \{(s_1, t_1), \ldots, (s_k, t_k)\}\)$, integers d and s. **Output:** $\mathcal{P} = \{P_1, \ldots, P_k\}$ satisfying I s.t. $\geq d$ vertices occurring in $\leq s$

paths.

- Positive results for general digraphs.
- Kernel size: $d \cdot 2^{k-s} \cdot {k \choose s} + 2k$.
- Open: Poly-kernel. Negative answer for $s = 0$ suffices.
- Consequence for Steiner Network particularly interesting.