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Turán Number

Definition: Turán Number

ex(n,F ) = max{e(G ) : |V (G )| = n,F 6⊆ G}.

Mantel’s Theorem (1907)

ex(n,K3) =
⌊
n2

4

⌋

Definition: Extremal Graph

Hex(n,F ) = Extremal graph on n vertices and ex(n,F ) edges.

Extremal graph:
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Turán Number: classical results

Let χ(F ) be the chromatic number of F .

Erdős-Stone-Simonovits: for a non-empty graph F

lim
n→∞

ex(n,F )
n2 = χ(F )−2

2χ(F )−2

Interesting for non-bipartite graphs.

If χ(F ) = 2, the theorem states that ex(n,F ) = o(n2).

Goal is to beat this result for certain bipartite graphs.
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Erdős-Stone-Simonovits: for a non-empty graph F

lim
n→∞

ex(n,F )
n2 = χ(F )−2

2χ(F )−2

Interesting for non-bipartite graphs.

If χ(F ) = 2, the theorem states that ex(n,F ) = o(n2).

Goal is to beat this result for certain bipartite graphs.



Complete graph

Kn

kG is the graph formed by the union of k disjoint copies of G .



Matching graph

Kn M`

kG is the graph formed by the union of k disjoint copies of G .



Union

Kn M`Kn ∪M`

kG is the graph formed by the union of k disjoint copies of G .



Join

Kn M`Kn ∨M`

kG is the graph formed by the union of k disjoint copies of G .



Easy for some small graphs

ex(n,P2) = 0.

ex(n,P3) =
⌊
n
2

⌋
.

ex(n,P`) =
⌊

n
`−1

⌋ (
`−1
2
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+
(
r
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)
.

R. Faudree and R. Schelp.
Path ramsey numbers in multicolorings.
Journal of combinatorial theory series B, 1975
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P = kP`.

P 6= kP3.

For any n, ex(n,P) is known for

P = kP2.

P = kP3 (our result).
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Turán Number for disjoint copies of paths

P = P`1 ∪ P`2 ∪ · · · ∪ P`k .

For big enough n, ex(n,P) is known for

P = kP`.

P 6= kP3.

For any n, ex(n,P) is known for

P = kP2.

P = kP3 (our result).

V. Campos and R. Lopes
A proof for a conjecture of Gorgol.
Electronic Notes in Discrete Mathematics, 2015



Disjoint copies of P3

Gorgol (2011)

ex(n, kP3) ≥ Gorgol(n, k)

Gorgol(n, k) = max



(
3k−1

2

)
+ b n−3k+1

2 c for 3k ≤ n ≤ 5k − 1(
k−1
2

)
+ (k − 1)(n − k + 1) + b n−k+1
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for n ≥ 5k − 1

K3k−1 ∪Mn−3k+1

K3k−1
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Kk−1
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Disjoint copies of P3

Gorgol’s Conjecture (2011)
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Related results

Sharp for:

k = 2, 3

n ≥ 7k

I. Gorgol
Turán Numbers of disjoints copies of graphs.
Graphs and Combinatories (2011).
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Algorithm

Input:

A Graph G = (V ,E ) with e(G ) > Gorgol(n, k).

An integer k ≤ n
3 .

Overview:

Start with Q = ∅.
Iteratively find improvement for Q.

Stop when no improvement is found.

Improvement condition:

Q′ is an improvement of Q if:

|Q′| > |Q| or

|Q′| = |Q| and Q′ has more triangles than Q.
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Algorithm

−→: improvement not found.
−→: improvement found.

Step 1start Step 2 Step 3 Step 4

|Q| ≥ kUpdate
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Iteration

Given Q = {Q1, · · · ,Qs}, s < k

Dividing the graph

Q3

Q2

Q1

Qs

U =
⋃
i

V (Qi ) F = V (G)− U



Iteration: Step 1

Find P3 in F

Q1

Qs

U F
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Iteration: Step 1

After Step 1

Qs

Q3

Q2

Q1

U F



Overview of steps 2-4

Step 2

Qa

F Local improvements

Qa ∪ F .

Qa ∪ Qb ∪ F .

Qa∪Qb∪Qc ∪F .

Naive complexity

O(n12k3).

Theorem

If no local improvements are found, then |Q| ≥ k .
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Time complexity

General improvements might be slow to compute.

Can prove the theorem with a small set of local improvements.

Algorithm complexity: O(k|E |).

Amortized O(|E |) time to find each copy of P3.
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Proof overview

G after Step 1

Qs

Q3

Q2

Q1

U F

G∗ = K3k−1 ∪Mn−3k+1

Qk−1

Qs

Q2

Q1

K3k−1

U∗ F ∗

After Step 1 no longer applies

We compare G and G∗.

As e(G ) > e(G∗), we show that e(Qi ) + e(Qi ,F )− 9 ≥ 1 for some
Qi ∈ Q.
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Proof Overview: Step 3

e(Qi ,Qj) ≥ 6

If Step 3 no longer applies, then e(Qi ,Qj) ≤ 5 for all pairs Qi ,Qj

with excess edges.

If Step 3 no longer applies, then ne(Qi ,Qj) ≥ 4 for all pairs Qi ,Qj

with excess edges.
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Properties from the Steps

After Step 1

Some sets Qi have many edges to vertices in F .

∑
i≤s

(e(Qi ) + e(Qi ,F )− 9) >
∑

1≤i<j≤s

ne(Qi ,Qj).

After Steps 2, 3 and 4

∑
1≤i<j≤s

ne(Qi ,Qj) ≥ g(k)∑
i≤s

(e(Qi ) + e(Qi ,F )− 9) ≤ f (k)

We prove the theorem by showing that if the algorithm stops before k
copies of P3 are found, then g(k) ≥ f (k) and a contradiction is met.
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Future works

k bigger stars.

Count the number of graphs on n vertices that are free of kP3.

Stability.



Thank you.

Questions?


