Raul Lopes¹ Victor Campos^{1,2}

¹ParGO Group, UFC, Fortaleza, Brazil ²Orientador

February 20, 2017

Turán Number

Definition: Turán Number

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Turán Number

Definition: Turán Number

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Definition: Extremal Graph

 $H_{ex}(n, F) = Extremal graph on n vertices and ex(n, F) edges.$

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Mantel's Theorem (1907)

$$\exp(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$$

Definition: Extremal Graph

 $H_{ex}(n, F) = Extremal graph on n vertices and ex(n, F) edges.$

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Mantel's Theorem (1907)

$$\exp(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$$

Definition: Extremal Graph

 $H_{ex}(n, F) = Extremal graph on n vertices and <math>ex(n, F) edges$.

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Turàn's Theorem (1941)

$$ex(n, K_{r+1}) = e(T_r(n)) = \left(1 - \frac{1}{r} + o(1)\right) \binom{n}{2}$$

Definition: Extremal Graph

 $H_{ex}(n, F) = Extremal graph on n vertices and ex(n, F) edges.$

Extremal graph:

$$ex(n,F) = max\{e(G) : |V(G)| = n, F \not\subseteq G\}.$$

Turàn's Theorem (1941)

$$ex(n, K_{r+1}) = e(T_r(n)) = \left(1 - \frac{1}{r} + o(1)\right) \binom{n}{2}$$

Definition: Extremal Graph

 $H_{ex}(n, F) = Extremal graph on n vertices and ex(n, F) edges.$

Erdős-Stone-Simonovits: for a non-empty graph F

$$\lim_{n \to \infty} \frac{\exp(n,F)}{n^2} = \frac{\chi(F) - 2}{2\chi(F) - 2}$$

Erdős-Stone-Simonovits: for a non-empty graph F

$$\lim_{n \to \infty} \frac{\exp(n,F)}{n^2} = \frac{\chi(F) - 2}{2\chi(F) - 2}$$

• Interesting for non-bipartite graphs.

Erdős-Stone-Simonovits: for a non-empty graph F

$$\lim_{n \to \infty} \frac{\exp(n,F)}{n^2} = \frac{\chi(F) - 2}{2\chi(F) - 2}$$

- Interesting for non-bipartite graphs.
- If $\chi(F) = 2$, the theorem states that $ex(n, F) = o(n^2)$.

Erdős-Stone-Simonovits: for a non-empty graph *F* $\lim_{E \to \infty} \frac{ex(n,F)}{n^2} = \frac{\chi(F)-2}{2\chi(F)-2}$

- Interesting for non-bipartite graphs.
- If $\chi(F) = 2$, the theorem states that $ex(n, F) = o(n^2)$.
- Goal is to beat this result for certain bipartite graphs.

kG is the graph formed by the union of k disjoint copies of G.

•
$$ex(n, P_2) = 0.$$

- $ex(n, P_2) = 0.$
- $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor$.

- $ex(n, P_2) = 0.$
- $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor$.
- $\operatorname{ex}(n, P_{\ell}) = \left\lfloor \frac{n}{\ell-1} \right\rfloor \binom{\ell-1}{2} + \binom{r}{2}.$

- $ex(n, P_2) = 0.$
- $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor.$

•
$$\operatorname{ex}(n, P_{\ell}) = \left\lfloor \frac{n}{\ell-1} \right\rfloor \binom{\ell-1}{2} + \binom{r}{2}$$

R. Faudree and R. Schelp. Path ramsey numbers in multicolorings. Journal of combinatorial theory series B, 1975

$$\mathcal{P} = P_{\ell_1} \cup P_{\ell_2} \cup \cdots \cup P_{\ell_k}$$

$$\mathcal{P} = P_{\ell_1} \cup P_{\ell_2} \cup \cdots \cup P_{\ell_k}.$$

$$\mathcal{P} = P_{\ell_1} \cup P_{\ell_2} \cup \cdots \cup P_{\ell_k}.$$

$$\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.$$

$$\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.$$

For big enough n, ex(n, P) is known for

$$\mathcal{P} = P_{\ell_1} \cup P_{\ell_2} \cup \cdots \cup P_{\ell_k}$$

For big enough n, ex(n, P) is known for

• $\mathcal{P} = kP_{\ell}$.

N. Bushaw and N. Kettle. *Turán Numbers of multiple paths and equibipartite forests.* Combinatorics, Probability and Computing, 2011

$$\mathcal{P} = \mathcal{P}_{\ell_1} \cup \mathcal{P}_{\ell_2} \cup \cdots \cup \mathcal{P}_{\ell_k}$$

For big enough n, ex(n, P) is known for

- $\mathcal{P} = kP_{\ell}$.
- $\mathcal{P} \neq kP_3$.

$$\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}$$

For big enough n, ex(n, P) is known for

- $\mathcal{P} = kP_{\ell}$.
- $\mathcal{P} \neq kP_3$.

For any n, ex(n, P) is known for

$$\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}$$

For big enough n, ex(n, P) is known for

- $\mathcal{P} = kP_{\ell}$.
- $\mathcal{P} \neq kP_3$.

For any n, ex(n, P) is known for

• $\mathcal{P} = kP_2$.

P. Erdős and T. Gallai
 On maximal paths and circuits of graphs
 Acta Mathematica Academiae Scientiarum Hungaricae, 1959

$$\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}$$

For big enough n, ex(n, P) is known for

- $\mathcal{P} = kP_{\ell}$.
- $\mathcal{P} \neq kP_3$.

For any n, ex(n, P) is known for

- $\mathcal{P} = kP_2$.
- $\mathcal{P} = kP_3$ (our result).

V. Campos and R. Lopes A proof for a conjecture of Gorgol. Electronic Notes in Discrete Mathematics, 2015

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$Gorgol(n,k) = max \langle$$

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$Gorgol(n,k) = max$$

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$\operatorname{Gorgol}(n,k) = \max \left\{ \begin{array}{c} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ \end{array} \right.$$

 $K_{3k-1} \cup M_{n-3k+1}$

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$\operatorname{Gorgol}(n,k) = \max \left\{ \begin{array}{c} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ \end{array} \right.$$

 $K_{3k-1} \cup M_{n-3k+1}$

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$\operatorname{Gorgol}(n,k) = \max \begin{cases} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ \binom{k-1}{2} + (k-1)(n-k+1) + \lfloor \frac{n-k+1}{2} \rfloor \end{cases}$$

 $K_{k-1} \vee M_{n-k+1}$

Disjoint copies of P_3

Gorgol (2011)

 $ex(n, kP_3) \ge Gorgol(n, k)$

$$\operatorname{Gorgol}(n,k) = \begin{cases} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor & \text{for } 3k \le n \le 5k-1 \\ \binom{k-1}{2} + (k-1)(n-k+1) + \lfloor \frac{n-k+1}{2} \rfloor & \text{for } n \ge 5k-1 \end{cases}$$

Disjoint copies of P_3

Gorgol's Conjecture (2011)

 $ex(n, kP_3) = Gorgol(n, k)$

$$\operatorname{Gorgol}(n,k) = \begin{cases} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor & \text{for } 3k \le n \le 5k-1 \\ \binom{k-1}{2} + (k-1)(n-k+1) + \lfloor \frac{n-k+1}{2} \rfloor & \text{for } n \ge 5k-1 \end{cases}$$

Sharp for: • k = 2, 3

I. Gorgol

Turán Numbers of disjoints copies of graphs. Graphs and Combinatories (2011).

Sharp for:			
• <i>k</i> = 2, 3			
● <i>n</i> ≥ 7 <i>k</i>			

N. Bushaw and N. Kettle. *Turán Numbers of multiple paths and equibipartite forests.* Combinatorics, Probability and Computing, 2011

Sharp for:		
• <i>k</i> = 2, 3		
 n ≥ 7k 		

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Sharp for:● *k* = 2,3

• $n \ge 7k$

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

Sharp for:● *k* = 2,3

• $n \ge 7k$

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

Builds a collection $Q = \{Q_1 \cdots Q_k\}$ where:

• $Q_i \subseteq V(G)$.

Shar	р	for	:
٥	k	=	2

• $n \ge 7k$

3

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

- $Q_i \subseteq V(G)$.
- $Q_i \cap Q_j = \emptyset$.

Sł	lar	р	for	:	
	•	k	=	2,	3

• $n \ge 7k$

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

- $Q_i \subseteq V(G)$.
- $Q_i \cap Q_j = \emptyset$.
- $|Q_i| = 3.$

Sł	lar	р	for	:	
	•	k	=	2,	3

• $n \ge 7k$

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

- $Q_i \subseteq V(G)$.
- $Q_i \cap Q_j = \emptyset$.
- $|Q_i| = 3.$
- $G[Q_i]$ contains P_3 .

Input:

• A Graph G = (V, E) with e(G) > Gorgol(n, k).

Overview:

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

• Start with $Q = \emptyset$.

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- Iteratively find improvement for \mathcal{Q} .

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- Iteratively find improvement for \mathcal{Q} .
- Stop when no improvement is found.

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- Iteratively find improvement for \mathcal{Q} .
- Stop when no improvement is found.

Improvement condition:

 \mathcal{Q}' is an improvement of $\mathcal Q$ if:

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- Iteratively find improvement for \mathcal{Q} .
- Stop when no improvement is found.

Improvement condition:

```
\mathcal{Q}' is an improvement of \mathcal Q if:
```

 $\bullet \ |\mathcal{Q}'| > |\mathcal{Q}| \text{ or }$

Input:

- A Graph G = (V, E) with e(G) > Gorgol(n, k).
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- Iteratively find improvement for \mathcal{Q} .
- Stop when no improvement is found.

- \mathcal{Q}' is an improvement of $\mathcal Q$ if:
 - $|\mathcal{Q}'| > |\mathcal{Q}|$ or
 - |Q'| = |Q| and Q' has more triangles than Q.

- \longrightarrow : improvement not found.
- \longrightarrow : improvement found.

 \longrightarrow : improvement not found.

 \longrightarrow : improvement found.

Iteration

Given $\mathcal{Q} = \{ \mathcal{Q}_1, \cdots, \mathcal{Q}_s \}$, s < k

Dividing the graph				
$U = \bigcup V($	(Q_i) $F = V(G) - U$			
Q_1 Q_2 Q_3				
Q_s				

- $Q_a \cup F$.
- $Q_a \cup Q_b \cup F$.

Local improvements

- $Q_a \cup F$.
- $Q_a \cup Q_b \cup F$.
- $Q_a \cup Q_b \cup Q_c \cup F$.

Local improvements

- $Q_a \cup F$.
- $Q_a \cup Q_b \cup F$.

•
$$Q_a \cup Q_b \cup Q_c \cup F$$
.

Naive complexity • $O(n^{12}k^3)$.

Theorem

If no local improvements are found, then $|Q| \ge k$.

• General improvements might be slow to compute.

- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.

- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.
- Algorithm complexity: O(k|E|).

- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.
- Algorithm complexity: O(k|E|).
- Amortized O(|E|) time to find each copy of P_3 .

Proof overview

Proof overview

Proof overview

After Step 1 no longer applies

Proof overview

After Step 1 no longer applies

• We compare G and G^* .

Proof overview

After Step 1 no longer applies

- We compare G and G^* .
- As $e(G) > e(G^*)$, we show that $e(Q_i) + e(Q_i, F) 9 \ge 1$ for some $Q_i \in Q$.

Proof Overview

$$e(Q_i) + e(Q_i, F) - 9 \ge 1 \implies e(Q_i, F) = 0$$

Proof Overview

$$\mathrm{e}(Q_i)+\mathrm{e}(Q_i,F)-9\geq 1 \implies \left\{ egin{array}{l} \mathrm{e}(Q_i,F)\geq 7 \ \end{array}
ight.$$

Proof Overview

$$\mathbf{e}(Q_i) + \mathbf{e}(Q_i, F) - 9 \ge 1 \implies \begin{cases} \mathbf{e}(Q_i, F) \ge 7 \\ \exists x_i \in Q_i : d(x_i, F) \ge 6 \end{cases}$$

$e(Q_i, Q_j) \geq 6$

$e(Q_i, Q_j) \ge 6$

If Step 3 no longer applies, then e(Q_i, Q_j) ≤ 5 for all pairs Q_i, Q_j with excess edges.

• If Step 3 no longer applies, then $ne(Q_i, Q_j) \ge 4$ for all pairs Q_i, Q_j with excess edges.

After Step 1

• Some sets Q_i have many edges to vertices in F.

After Step 1

• Some sets Q_i have many edges to vertices in F.

$$\sum_{i\leq s}(\mathsf{e}(Q_i)+\mathsf{e}(Q_i,F)-9)>\sum_{1\leq i< j\leq s}\mathsf{ne}(Q_i,Q_j).$$

After Step 1

• Some sets Q_i have many edges to vertices in F.

$$\sum_{i \leq s} (\mathsf{e}(Q_i) + \mathsf{e}(Q_i, \mathcal{F}) - 9) > \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j).$$

After Steps 2, 3 and 4

After Step 1

• Some sets Q_i have many edges to vertices in F.

$$\sum_{i \leq s} (\mathsf{e}(Q_i) + \mathsf{e}(Q_i, \mathcal{F}) - 9) > \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j).$$

After Steps 2, 3 and 4

After Step 1

• Some sets Q_i have many edges to vertices in F.

$$\sum_{i \leq s} (\mathsf{e}(Q_i) + \mathsf{e}(Q_i, \mathcal{F}) - 9) > \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j).$$

After Steps 2, 3 and 4

•
$$\sum_{1 \leq i < j \leq s} \operatorname{ne}(Q_i, Q_j) \geq g(k)$$

•
$$\sum_{i\leq s} (e(Q_i) + e(Q_i, F) - 9) \leq f(k)$$

After Step 1

• Some sets Q_i have many edges to vertices in F.

$$\sum_{i \leq s} (\mathsf{e}(Q_i) + \mathsf{e}(Q_i, \mathcal{F}) - 9) > \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j).$$

After Steps 2, 3 and 4

•
$$\sum_{1 \leq i < j \leq s} \operatorname{ne}(Q_i, Q_j) \geq g(k)$$

•
$$\sum_{i\leq s}(e(Q_i)+e(Q_i,F)-9)\leq f(k)$$

We prove the theorem by showing that if the algorithm stops before k copies of P_3 are found, then $g(k) \ge f(k)$ and a contradiction is met.

- k bigger stars.
- Count the number of graphs on n vertices that are free of kP_3 .
- Stability.

Thank you.

Questions?