Raul Lopes¹ Victor Campos^{1,2}

¹ParGO Group, UFC, Fortaleza, Brazil 2 Orientador

February 20, 2017

Turán Number

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Turán Number

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Definition: Extremal Graph

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Mantel's Theorem (1907)

$$
\mathsf{ex}(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor
$$

Definition: Extremal Graph

Turán Number: classical results

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Mantel's Theorem (1907)

$$
\mathsf{ex}(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor
$$

Definition: Extremal Graph

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Turàn's Theorem (1941)

$$
ex(n, K_{r+1}) = e(T_r(n)) = (1 - \frac{1}{r} + o(1))\binom{n}{2}
$$

Definition: Extremal Graph

 $H_{ex}(n, F)$ = Extremal graph on *n* vertices and ex(*n*, *F*) edges.

Extremal graph:

Definition: Turán Number

$$
\mathsf{ex}(n,F)=\max\{e(G):|V(G)|=n,F\nsubseteq G\}.
$$

Turàn's Theorem (1941)

$$
ex(n, K_{r+1}) = e(T_r(n)) = (1 - \frac{1}{r} + o(1))\binom{n}{2}
$$

Definition: Extremal Graph

Erdős-Stone-Simonovits: for a non-empty graph F

$$
\lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{n^2} = \frac{\chi(F) - 2}{2\chi(F) - 2}
$$

Erdős-Stone-Simonovits: for a non-empty graph F lim n→∞ $ex(n,F)$ $\frac{\chi(F)-2}{n^2} = \frac{\chi(F)-2}{2\chi(F)-2}$ $2\chi(F)-2$

• Interesting for non-bipartite graphs.

Erdős-Stone-Simonovits: for a non-empty graph F lim n→∞ $ex(n,F)$ $\frac{\chi(F)-2}{n^2} = \frac{\chi(F)-2}{2\chi(F)-2}$ $2\chi(F)-2$

- Interesting for non-bipartite graphs.
- If $\chi(F) = 2$, the theorem states that $ex(n, F) = o(n^2)$.

Erdős-Stone-Simonovits: for a non-empty graph F lim n→∞ $ex(n,F)$ $\frac{\chi(F)-2}{n^2} = \frac{\chi(F)-2}{2\chi(F)-2}$ $2\chi(F)-2$

- Interesting for non-bipartite graphs.
- If $\chi(F) = 2$, the theorem states that $ex(n, F) = o(n^2)$.
- Goal is to beat this result for certain bipartite graphs.

 kG is the graph formed by the union of k disjoint copies of G .

$$
\bullet \ \mathsf{ex}(n,P_2)=0.
$$

- $ex(n, P_2) = 0$.
- $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor.$

• $ex(n, P_2) = 0$. $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor.$ $\mathsf{ex}(n, P_\ell) = \left\lfloor \frac{n}{\ell-1} \right\rfloor {\ell-1 \choose 2} + \binom{r}{2}.$

• $ex(n, P_2) = 0$. $ex(n, P_3) = \lfloor \frac{n}{2} \rfloor.$ $\mathsf{ex}(n, P_\ell) = \left| \frac{n}{\ell-1} \right| {\ell-1 \choose 2} + \binom{r}{2}.$

ā. R. Faudree and R. Schelp. Path ramsey numbers in multicolorings. Journal of combinatorial theory series B, 1975

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough n, $ex(n, P)$ is known for

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough *n*, $ex(n, P)$ is known for

 $\circ \mathcal{P} = kP_{\ell}$.

N. Bushaw and N. Kettle.

Turán Numbers of multiple paths and equibipartite forests. Combinatorics, Probability and Computing, 2011

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough *n*, $ex(n, P)$ is known for

- $\bullet \mathcal{P} = kP_{\ell}$.
- $\bullet \mathcal{P} \neq kP_3$.

B. Lidický, H. Liu, C. Palmer. On the Turán number of forests. arXiv:1204.3102, 2012

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough n, $ex(n, P)$ is known for

- $\bullet \mathcal{P} = kP_{\ell}$.
- $\bullet \mathcal{P} \neq kP_3$.

For any n , $ex(n, P)$ is known for

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough n, $ex(n, P)$ is known for

- $\bullet \mathcal{P} = kP_{\ell}$.
- $\bullet \mathcal{P} \neq kP_3$.

For any *n*, $ex(n, P)$ is known for

 $\bullet \mathcal{P} = kP_2$.

P. Erdős and T. Gallai On maximal paths and circuits of graphs Acta Mathematica Academiae Scientiarum Hungaricae, 1959

$$
\mathcal{P}=P_{\ell_1}\cup P_{\ell_2}\cup\cdots\cup P_{\ell_k}.
$$

For big enough n, $ex(n, P)$ is known for

- $\bullet \mathcal{P} = kP_{\ell}$.
- $\bullet \mathcal{P} \neq kP_3$.

For any *n*, $ex(n, P)$ is known for

- $P = kP_2$.
- \odot $\mathcal{P} = kP_3$ (our result).

V. Campos and R. Lopes A proof for a conjecture of Gorgol. Electronic Notes in Discrete Mathematics, 2015

Gorgol (2011)

 $ex(n, kP_3) \geq Gorgol(n, k)$

$$
Gorgol(n,k) = max \left\{ \right.
$$

Gorgol (2011)

$$
\mathsf{ex}(n,kP_3) \geq \mathsf{Gorgol}(n,k)
$$

$$
Gorgol(n,k) = max \left\{ \right.
$$

 $K_{3k-1} \cup M_{n-3k+1}$ K_{3k-1} M_{n-3k+1}

Gorgol (2011)

```
ex(n, kP_3) \geq Gorgol(n, k)
```

$$
Gorgol(n, k) = max \begin{cases} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ 1 \end{cases}
$$

 $K_{3k-1} \cup M_{n-3k+1}$

$$
\begin{array}{ccc}\n & & M_{n-3k+1} \\
\hline\n & & & & & & & & \\
\hline\n\end{array}
$$

Gorgol (2011)

 $ex(n, kP_3) \geq Gorgol(n, k)$

$$
Gorgol(n,k) = \max \left\{ \begin{array}{c} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ 1 \end{array} \right.
$$

 $K_{3k-1} \cup M_{n-3k+1}$

 K_{k-1} \vee M_{n-k+1}

Gorgol (2011)

 $ex(n, kP_3) \geq Gorgol(n, k)$

$$
Gorgol(n,k) = \max \begin{cases} \binom{3k-1}{2} + \lfloor \frac{n-3k+1}{2} \rfloor \\ \binom{k-1}{2} + (k-1)(n-k+1) + \lfloor \frac{n-k+1}{2} \rfloor \end{cases}
$$

 $K_{3k-1} \cup M_{n-3k+1}$ K_{3k-1}

 K_{k-1} \vee M_{n-k+1}

Disjoint copies of P_3

Gorgol (2011)

 $ex(n, kP_3) \geq Gorgol(n, k)$

\n
$$
\text{Gorgol}(n, k) =\n \begin{cases}\n \binom{3k-1}{2} + \left\lfloor \frac{n-3k+1}{2} \right\rfloor & \text{for } 3k \leq n \leq 5k - 1 \\
\binom{k-1}{2} + (k-1)(n-k+1) + \left\lfloor \frac{n-k+1}{2} \right\rfloor & \text{for } n \geq 5k - 1\n \end{cases}
$$
\n

Disjoint copies of P_3

Gorgol's Conjecture (2011)

 $ex(n, kP_3) = Gorgol(n, k)$

\n
$$
\text{Gorgol}(n, k) =\n \begin{cases}\n \binom{3k-1}{2} + \left\lfloor \frac{n-3k+1}{2} \right\rfloor & \text{for } 3k \leq n \leq 5k - 1 \\
\binom{k-1}{2} + (k-1)(n-k+1) + \left\lfloor \frac{n-k+1}{2} \right\rfloor & \text{for } n \geq 5k - 1\n \end{cases}
$$
\n

Sharp for: • $k = 2, 3$

I. Gorgol

Turán Numbers of disjoints copies of graphs. Graphs and Combinatories (2011).

F

N. Bushaw and N. Kettle. Turán Numbers of multiple paths and equibipartite forests. Combinatorics, Probability and Computing, 2011

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

Builds a collection $Q = \{Q_1 \cdots Q_k\}$ where:

 \bullet Q_i \subseteq V(G).

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

- \bullet Q_i \subseteq V(G).
- \bullet $Q_i \cap Q_i = \emptyset$.

Our result: Proof of Gorgol's Conjecture

 $ex(n, kP_3) = Gorgol(n, k)$

Algorithmic proof

- \bullet Q_i \subseteq V(G).
- $Q_i \cap Q_i = \emptyset$.
- $|Q_i|=3.$

Our result: Proof of Gorgol's Conjecture

$$
\mathsf{ex}(n,kP_3) = \mathsf{Gorgol}(n,k)
$$

Algorithmic proof

- \bullet Q_i \subseteq V(G).
- $Q_i \cap Q_i = \emptyset$.
- $|Q_i|=3.$
- $G[Q_i]$ contains P_3 .

Input:

• A Graph $G = (V, E)$ with $e(G) > G \text{orgol}(n, k)$.

Overview:

Input:

- A Graph $G = (V, E)$ with $e(G) > G \text{orgol}(n, k)$.
- An integer $k \leq \frac{n}{3}$.

Overview:

Input:

- A Graph $G = (V, E)$ with $e(G) > G \text{orgol}(n, k)$.
- An integer $k \leq \frac{n}{3}$.

Overview:

• Start with $Q = \emptyset$.

Input:

- A Graph $G = (V, E)$ with $e(G) > G$ orgol (n, k) .
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- \bullet Iteratively find improvement for Q .

Input:

- A Graph $G = (V, E)$ with $e(G) > G$ orgol (n, k) .
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- \bullet Iteratively find improvement for Q .
- Stop when no improvement is found.

Input:

- A Graph $G = (V, E)$ with $e(G) > G$ orgol (n, k) .
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- \bullet Iteratively find improvement for Q .
- Stop when no improvement is found.

```
\mathcal{Q}' is an improvement of \mathcal Q if:
```
Input:

- A Graph $G = (V, E)$ with $e(G) > G$ orgol (n, k) .
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- \bullet Iteratively find improvement for Q .
- Stop when no improvement is found.

Improvement condition:

```
\mathcal{Q}' is an improvement of \mathcal Q if:
```
 $|Q'| > |Q|$ or

Input:

- A Graph $G = (V, E)$ with $e(G) > G \text{orgol}(n, k)$.
- An integer $k \leq \frac{n}{3}$.

Overview:

- Start with $Q = \emptyset$.
- \bullet Iteratively find improvement for Q .
- Stop when no improvement is found.

- \mathcal{Q}' is an improvement of $\mathcal Q$ if:
	- $|Q'| > |Q|$ or
	- $|Q'| = |Q|$ and Q' has more triangles than Q .

- −→: improvement not found.
- −→: improvement found.

−→: improvement not found.

→: improvement found.

Iteration

Given $\mathcal{Q} = \{Q_1, \cdots, Q_s\}$, $s < k$

Local improvements $Q_a \cup F$.

Local improvements \bullet Q_a ∪ F. $Q_a \cup Q_b \cup F$.

Local improvements

- $Q_a \cup F$.
- $Q_a \cup Q_b \cup F$.
- $Q_a \cup Q_b \cup Q_c \cup F$.

Local improvements

- \bullet Q_a ∪ F.
- $Q_a \cup Q_b \cup F$.
- $Q_a \cup Q_b \cup Q_c \cup F$.

Naive complexity $O(n^{12}k^3)$.

Theorem

If no local improvements are found, then $|Q| \geq k$.

General improvements might be slow to compute.

- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.
- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.
- Algorithm complexity: $O(k|E|)$.
- General improvements might be slow to compute.
- Can prove the theorem with a small set of local improvements.
- Algorithm complexity: $O(k|E|)$.
- Amortized $O(|E|)$ time to find each copy of P_3 .

Proof overview

Proof overview

Proof overview

After Step 1 no longer applies

Proof overview

After Step 1 no longer applies

We compare G and G^* .

Proof overview

After Step 1 no longer applies

- We compare G and G^* .
- As $\mathsf{e}(G) > \mathsf{e}(G^*)$, we show that $\mathsf{e}(\bar{Q}_i) + \mathsf{e}(\bar{Q}_i, F) 9 \geq 1$ for some $Q_i \in \mathcal{Q}$.

Proof Overview

$$
e(Q_i)+e(Q_i,F)-9\geq 1 \implies \left\{\right.
$$

Proof Overview

$$
e(Q_i) + e(Q_i, F) - 9 \ge 1 \implies \begin{cases} e(Q_i, F) \ge 7 \\ 1 \end{cases}
$$

Proof Overview

$$
e(Q_i) + e(Q_i, F) - 9 \ge 1 \implies \begin{cases} e(Q_i, F) \ge 7 \\ \exists x_i \in Q_i : d(x_i, F) \ge 6 \end{cases}
$$

$\mathsf{e}(\mathit{Q}_i,\mathit{Q}_j) \geq 6$

$\mathsf{e}(\mathit{Q}_i,\mathit{Q}_j) \geq 6$ Q_i Q_j

If Step 3 no longer applies, then e $(Q_i,Q_j)\leq$ 5 for all pairs Q_i,Q_j with excess edges.

If Step 3 no longer applies, then ${\sf ne}(Q_i,Q_j) \geq 4$ for all pairs Q_i,Q_j with excess edges.

After Step 1

• Some sets Q_i have many edges to vertices in F .

After Step 1

 \bullet Some sets Q_i have many edges to vertices in F.

$$
\sum_{i\leq s} (e(Q_i)+e(Q_i,F)-9)>\sum_{1\leq i
$$

After Step 1

 \bullet Some sets Q_i have many edges to vertices in F.

$$
\sum_{i\leq s}(e(Q_i)+e(Q_i,F)-9)>\sum_{1\leq i
$$

After Steps 2, 3 and 4

After Step 1

 \bullet Some sets Q_i have many edges to vertices in F.

$$
\sum_{i\leq s} (e(Q_i)+e(Q_i,F)-9)>\sum_{1\leq i
$$

After Steps 2, 3 and 4

After Step 1

 \bullet Some sets Q_i have many edges to vertices in F.

$$
\sum_{i\leq s} (e(Q_i)+e(Q_i,F)-9)>\sum_{1\leq i
$$

After Steps 2, 3 and 4

$$
\bullet \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j) \geq g(k)
$$

$$
\bullet \ \sum_{i\leq s} (\mathsf e(Q_i)+\mathsf e(Q_i,F)-9)\leq f(k)
$$

After Step 1

 \bullet Some sets Q_i have many edges to vertices in F.

$$
\sum_{i\leq s} (e(Q_i)+e(Q_i,F)-9)>\sum_{1\leq i
$$

After Steps 2, 3 and 4

$$
\bullet \sum_{1 \leq i < j \leq s} \mathsf{ne}(Q_i, Q_j) \geq g(k)
$$

$$
\bullet \sum_{i\leq s} (e(Q_i)+e(Q_i,F)-9)\leq f(k)
$$

We prove the theorem by showing that if the algorithm stops before k copies of P_3 are found, then $g(k) \ge f(k)$ and a contradiction is met.

- \bullet *k* bigger stars.
- Count the number of graphs on *n* vertices that are free of kP_3 .
- **•** Stability.

Thank you.

Questions?