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XP and FPT

Problem with input size n, associated parameter k:

XP problem ⇒ f (k) · ng(k) time algorithm.
I Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.

I Example: O(2k · n2) (c independent of k).

W[1]-hard problem ⇒ strong evidence that it is not FPT.
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(Undirected) Grid Theorem

FPT Time

decomposition

width ≤ f (k)

Grid Theorem

N. Robertson and P. Seymour.
Graph minors V. Excluding a planar graph.
Journal of Combinatorial Theory, Series B, 1986.
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(Undirected) Grid Theorem

FPT Time

(k × k) grid
minor

decomposition

width ≤ f (k)

Conjecture: Directed version
Conjectured independently by

Reed (1999).
Johnson, Robertson, Seymour, and Thomas (2001).
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Longest Path
Input: Graph G , integer k.
Question: Is there a path of size ≥ k in G?
`p(G) = size of longest path in G .

Vertex Cover
Input: Graph G , integer k.
Question: Is there X ⊆ V (G) with |X | ≤ k s.t. G \ X is edgeless?
vc(G) = min. size of vertex cover in G .

Next part based in:

M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk and S. Saurabh.
Parameterized Algorithms.
Springer, 2015.
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A look at Bidimensionality

What’s in a (k × k)-grid?

k2-path.⌊
k2

2

⌋
independent edges.

k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒



`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.

⌊
k2

2

⌋
independent edges.

k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒



`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.⌊

k2

2

⌋
independent edges. k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒



`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.⌊

k2

2

⌋
independent edges. k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒



`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.⌊

k2

2

⌋
independent edges. k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒



`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.⌊

k2

2

⌋
independent edges. k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒


`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



A look at Bidimensionality

What’s in a (k × k)-grid?
k2-path.⌊

k2

2

⌋
independent edges. k

k

FACT: Longest Path and Vertex Cover are minor closed.

G has (
√
k ×
√
k)-grid minor =⇒


`p(G) ≥ k.

vc(G) ≥ k/2.

5 / 33



Theorem (Planar excluded grid theorem)
Planar G + tw(G) ≥ 9t/2 then G contains (t × t)-grid minor.
B Grid or decomposition found in O(n2) time.

N. Robertson, P. Seymour, and R. Thomas.
Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 1994.

Q-P. Gu and H. Tamaki.
Improved Bounds on the planar branchwidth with respect to the largest grid
minor size
Algorithmica, 2012.

+

G has (
√
k ×
√
k)-grid minor =⇒ `p(G) ≥ k.

Planar
Longest
Path

“YES” instance
tw(G) ≥ c ·

√
k

(
√
k ×
√
k)-grid minor

Longest Path
in 2O(tw) · n time

Planar Longest Path
in 2O(

√
k) · nO(1) time
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Subexponential algorithms for planar Steiner Tree, Feedback Vertex
Set, Longes Path, Vertex Cover, Dominating Set...

Similar framework for digraphs?
Start with a (kind of) grid and a decomposition.

Cylindrical grid of order 4.
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Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

Proof - 16 years later

K. Kawarabayashi and S. Kreutzer.
The Directed Grid Theorem
STOC, 2015
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Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

order k
cylindrical grid minor

Our result

XP → FPT
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Understanding the Directed Grid Theorem

XP Time

decomposition

width ≤ f (k)

Order k haven
dtw ≥ k certificate

Large haven ⇒ Large bramble.
Large bramble ⇒ Well linked long path.
Well linked long path ⇒ Cylindrical Grid.
Constructive proof yields an XP algorithm.
Analyze what needs to change to achieve FPT time.

T. Johnson, N. Robertson, P. Seymour and R. Thomas.
Directed tree-width
JCTB, 2001
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Directed Grid Theorem: constructive proof (I)

(D, k) Haven of
order k

Bramble
of order k

Well-linked
long path

Decomposition
of width ≤ f (k)

(1)
(4)

(2) (3)

(1) Haven vs Decomposition in XP time.

(2) Haven ⇒ Bramble of size nO(k).
(3) Bramble ⇒ Well-linked long path (working with hitting sets XP time).

(1)
(2) k-linked sets ⇒ Bramble that is easier to work with.
(3) Bramble ⇒ Well-linked long path (working with hitting sets in FPT time).
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Arboreal decompositions: J.R.S.T. algorithm

1 Starts with trivial decomposition: V (D) in one bag.

2 ∃? bag that is “too large“?

NO: End.
YES: (Try to) break it.

�

�

This bag is
too large

�
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Large bags and balanced separators

- Given T ⊆ V (D):

Definition (Balanced Separators, k-linked sets)

B Z ⊆ V (D) is a T-balanced separator if |T ∩ V (C)| ≤
⌊
|T |
2

⌋
for every strong

component C of D \ Z.

B T is k-linked if every T -balanced separator has size ≥ k + 1.

|T | = 7,
⌊
|T |
2

⌋
= 3.

Z is T -balanced Separator.

Key ingredient: T ⊆ Large bag X , |T | ≤ 2k − 1: is T (k − 1)-linked?
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Finding balanced separators: XP part of JRST algorithm

D On each iteration:

Given |T | ≤ 2k − 1.
Find Z ⊆ V (D):

I |Z | ≤ k − 1; and
I |C ∩ T | ≤ k − 1 for strong components of

D \ Z .

O(nk) algorithm:

B Enumerate strong components of D \ Z for
each of the

( n
k−1
)
sets Z .

Every test is positive =⇒ decomposition.
Any negative =⇒ (k − 1)-linked set T .
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Topological order and balanced separators

Z is T -balanced separator =⇒

I Each strong component of D \ Z contains at most k − 1 vertices of T .
(Reverse) topological order of strong components with Ci ∩ T 6= ∅.

C1 ∩ T C2 ∩ T C3 ∩ T

No Ci → Cj path when i > j

=⇒ No Ti → Tj path when i > j

14 / 33



Topological order and balanced separators

Z is T -balanced separator =⇒
I Each strong component of D \ Z contains at most k − 1 vertices of T .

(Reverse) topological order of strong components with Ci ∩ T 6= ∅.

C1 ∩ T C2 ∩ T C3 ∩ T

No Ci → Cj path when i > j

=⇒ No Ti → Tj path when i > j

14 / 33



Topological order and balanced separators

Z is T -balanced separator =⇒
I Each strong component of D \ Z contains at most k − 1 vertices of T .

(Reverse) topological order of strong components with Ci ∩ T 6= ∅.

C1 ∩ T C2 ∩ T C3 ∩ T

No Ci → Cj path when i > j

=⇒ No Ti → Tj path when i > j

14 / 33



Topological order and balanced separators

Z is T -balanced separator =⇒
I Each strong component of D \ Z contains at most k − 1 vertices of T .

(Reverse) topological order of strong components with Ci ∩ T 6= ∅.

T1

C1 ∩ T

T2

C2 ∩ T

T3

C3 ∩ T

No Ci → Cj path when i > j =⇒ No Ti → Tj path when i > j

14 / 33



Similar problem P

Given:
I |T | ≤ 2k − 1.

I Ordered partition T1, . . . , Tr of T with |Ti | ≤ k − 1.

Find: Z ⊆ V (D) such that:

1 |Z | ≤ k − 1; and
2 there are no Ti → Tj paths for i < j in D \ Z .

Reduces to FPT problem

R. Erbacher, T. Jaeger, N. Talele and J. Teutsch
Directed Multicut with Linearly Ordered Terminals
CoRR abs/1407.7498, 2014.
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Balanced separators and P

D

∩Ci

Z

T

T1

≤ k − 1

T2

≤ k − 1

T3

≤ k − 1

Lemma
∃ bal. separator |Z | ≤ k − 1 ⇔ P positive for some partition T1, . . . ,Tr of T \ Z.

#Ordered partitions of T is 2O(k log k) (k-th ordered Bell number,
|T | ≤ 2k − 1).
Find balanced separators in FPT time w. param. k.
k-linked sets vs Decomposition in FPT time.
We solve more general version, which we named “Partitioning sets”.
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k-linked sets vs Decompositions

XP Time

decomposition

width ≤ f (k)

Order k haven
dtw ≥ k certificate

Theorem (Johnson et al.’01)
In XP time:
produce arboreal decomposition of width ≤ 3k − 2 or haven of order k

Each iteration decides if a given set T is (k − 1)-linked.
Only step that is (originally) done in XP time.
We solve it in FPT time.
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k-linked sets vs Decompositions

FPT Time

decomposition

width ≤ f (k)

k-linked set
dtw ≥ k certificate

Theorem (Johnson et al.’01)
In XP time:
produce arboreal decomposition of width ≤ 3k − 2 or (k − 1)-linked set T .
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Directed Grid theorem: constructive proof (II)

(D, k) k-linked
sets

Bramble
of order k

Well-linked
long path

Decomposition
of width ≤ f (k)

(1)
(4)

(2) (3)

(1) Haven vs Decomposition in XP time.
(2) Haven ⇒ Bramble of size nO(k).
(3) Bramble ⇒ Well-linked long path: working with hitting sets (XP time).

X(1) k-linked sets vs Decomposition in FPT time.
(2) k-linked sets ⇒ Bramble that is easier to work with.
(3) Bramble ⇒ Well-linked long path: working with hitting sets (FPT time).

18 / 33



Brambles in digraphs

Definition (Brambles on digraphs)
Family of strongly connected subgraphs B = {B1, . . . ,B`} s.t.

if {B,B′} ⊆ B then either

1 V (B) ∩ V (B′) 6= ∅ or
2 edges from V (B) to V (B′) and from V (B′) to V (B).

B B′ B B′

hitting set of B = set of vertices touching every B ∈ B.

order of B = minimum size of hitting set.
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Working with brambles

Bramble B = {B1,B2, . . . ,B`}.

Naive approach to find hitting sets w. size k (assuming |B| > k):

I for each X ⊆ V (D) w. |X | ≤ k,
I test if X intersects every element of B.

B1 B2 B3 B`

Running time: O(nk) · |B|.

20 / 33



Working with brambles

Bramble B = {B1,B2, . . . ,B`}.

Naive approach to find hitting sets w. size k (assuming |B| > k):
I for each X ⊆ V (D) w. |X | ≤ k,

I test if X intersects every element of B.

B1 B2 B3 B`

Running time: O(nk) · |B|.

20 / 33



Working with brambles

Bramble B = {B1,B2, . . . ,B`}.

Naive approach to find hitting sets w. size k (assuming |B| > k):
I for each X ⊆ V (D) w. |X | ≤ k,
I test if X intersects every element of B.

B1 B2 B3 B`

X

Running time: O(nk) · |B|.

20 / 33



Working with brambles

Naive approach O(nk) · |B|.

Not ideal: brambles of small order can have exponential size.

EASY: Haven of order k =⇒ bramble of order
⌊ k

2
⌋

+ 1 and size nO(k).

I Naive approach =⇒ XP algorithm to find hitting sets.

Better bramble from k-linked sets. v1

v2 v3 v4 v5 vn· · ·

Bv1 ={all induced subgraphs containing v1} is a bramble of order 1 and size
2n−1.
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Brambles from k-linked sets

D

∩Ci

Z

T

|T | ≤ 2k − 1.
T is (k − 1)-linked ⇒ no k − 1 bal. separator

No Z ⊆ V (D) with |Z | ≤ k − 1 satisfies:
I |C ∩ T | ≤ k − 1 for strong component C of D \ Z .

Definition (T -bramble)
BT = {B ⊆ D | B is induced, strongly connected and |V (B) ∩ T | ≥ k}.

BT is a bramble: any B,B′ ∈ BT intersect since |T | = 2k − 1.
of order k: any k vertices of T touches every B ∈ BT , and T is k − 1-linked.
Skip havens.
Description: T .
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Bramble over (k − 1)-linket set T
BT = {B ⊆ D | B is induced, strongly connected and |V (B) ∩ T | ≥ k}.

Description: T =⇒ Work with BT without explicitly looking at its elements.

Is D[X ] ∈ BT ?
I Is D[X ] strongly connected and |X ∩ T | ≥ k? ⇒ polynomial-time.

Is X a hitting set of BT ?

I Is X a T -balanced separator? ⇒ polynomial-time.

For B′ ⊆ BT , is order(B′) ≤ q?

I Solvable through T -partitioning sets ⇒ FPT time (appropriate choices of B′).

F (Partitioning sets generalize balanced separators).
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Directed Grid Theorem: constructive proof (III)

(D, k) k-linked
sets

Bramble
of order k

Well-linked
long path

Decomposition
of width ≤ f (k)

(1)
(4)

(2) (3)

(1) Haven vs Decomposition in XP time.
(2) Haven ⇒ Bramble of size nO(k).
(3) Bramble ⇒ Well-linked long path: working with hitting sets (XP time).

X(1) k-linked sets vs Decomposition in FPT time.
X(2) k-linked sets ⇒ Bramble that is easier to work with.
(3) Bramble ⇒ Well-linked long path: working with hitting sets (FPT time).
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Step 1: Hitting set path
Find a path P that hits BT in polynomial-time.

Step 2: Split BT

Use P to split BT into “sub-brambles” of adequate size.

Step 1 + Step 2 =⇒ Well-linked set in P.
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Step 1

GOAL: Find a path P that is hitting set of BT .

I Start with B ∈ BT and P = v ∈ B.
I If P does not hit B′ ∈ BT , improve P (Key ingredient 1).
I Iterate until hitting set.

B B′

Key ingredient 1
Is Z a hitting set of BT ?
EASY: Does D \ Z contains a strong component intersecting k vertices of T?
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Step 2 (key ingredient)

Definition (Bramble intersecting X )
BT (X ) = {B ∈ BT | B intersects X}.

Definition (Bramble avoiding X )
BT (X ) = {B ∈ BT | B is disjoint from X}.

Key ingredient
Is order(BT (X )) ≥ k ′?

B FPT time through Partitioning sets.

Not easy. However,

order(BT (X ))+order(BT (X )) ≥ order(BT )

Estimate order(BT (X )) by solving order(BT (X )).
Solve order(BT (X )) through partitioning sets ⇒ FPT time.
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Splitting BT (First iteration, simplified)

GOAL: Split BT in “sub-brambles” of adequate order q, intersecting P.
Path P hitting BT .
Find P1 minimum initial subpath of P s.t. order(BT (P1)) ≥ q.

I Iteratively: add a vertex, test if

order(BT (P1)) ≥ order(BT )− order(BT (P1))

P(BT )

28 / 33



Splitting BT (First iteration, simplified)

GOAL: Split BT in “sub-brambles” of adequate order q, intersecting P.
Path P hitting BT .
Find P1 minimum initial subpath of P s.t. order(BT (P1)) ≥ q.

I Iteratively: add a vertex, test if order(BT (P1)) ≥ q.

order(BT (P1)) ≥ order(BT )− order(BT (P1))

P(BT )

BT (P1)

28 / 33



Splitting BT (First iteration, simplified)

GOAL: Split BT in “sub-brambles” of adequate order q, intersecting P.
Path P hitting BT .
Find P1 minimum initial subpath of P s.t. order(BT (P1)) ≥ q.

I Iteratively: add a vertex, test if order(BT (P1)) ≥ q.

order(BT (P1)) ≥ order(BT )− order(BT (P1))

P(BT )

BT (P1)

28 / 33



Splitting BT (First iteration, simplified)

GOAL: Split BT in “sub-brambles” of adequate order q, intersecting P.
Path P hitting BT .
Find P1 minimum initial subpath of P s.t. order(BT (P1)) ≥ q.

I Iteratively: add a vertex, test if order(BT (P1)) ≥ q.

order(BT (P1)) ≥ order(BT )− order(BT (P1))

P(BT )

BT (P1)

28 / 33



Splitting BT (First iteration, simplified)

GOAL: Split BT in “sub-brambles” of adequate order q, intersecting P.
Path P hitting BT .
Find P1 minimum initial subpath of P s.t. order(BT (P1)) ≥ q.

I Iteratively: add a vertex, test if order(BT (P1)) ≥ q.

order(BT (P1)) ≥ order(BT )− order(BT (P1))

P(BT )

BT (P1) BT (P1)

28 / 33



Lemma
In FPT time:

Given P hitting BT , order(BT ) ≥ (k + 1)
(⌊ k

2
⌋

+ 1
)
− 1

k disjoint “sub-brambles” of order ≥
⌊ k

2
⌋
intersecting subpaths of P.

Use sub-brambles to show that P contains well-linked set of order k.

I Used to construct highly-connected system of paths.

K. Kawarabayashi and S. Kreutzer.
The Directed Grid Theorem
STOC, 2015
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order of f (k) unkown in general, roughly k6 in planar digraphs.

Find cylindrical grid or decomposition in FPT time.
Decomposition is supposed to be a tool.
Most interesting problems are W[1]-hard on graphs of bounded directed tree
width.
Is there an interesting problem can be shown FPT using this?

M. Hatzel, K. Kawarabayashi, and S. Kreutzer.
Polynomial Planar Directed Grid Theorem
SODA’19
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Applications
H, strongly connected, has Erdős-Pósa property ⇔ H is butterfly (or
topological) minor of a cylindrical grid.

Asymmetrical version of Directed Disjoint Paths (DDP, k pairs):

I Positive answer for DDP with congestion c or negative answer for DDP.
I XP algorithm using Directed Grid Theorem.
I Claimed to be W[1]-hard, hard to verify.

DDP with congestion = 2 in (36k3 + 2k)-strongly connected digraphs.

I Solution in XP time if directed tree-width is bounded.
I Finds solution in XP time using procedures that we show how to do in FPT

time.

The Directed Flat Wall Theorem recently proved.
Courcelle-like meta-theorem w.r.t. directed tree-width (XP time).

S. Amiri, K. Kawarabayashi, S. Kreutzer and P. Wollan.
The Erdős-Pósa property for directed graphs
CoRR abs/1603.02504, 2016
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Brambles with constant congestion

Bramble with congestion s =⇒ every vertex in ≤ s elements of the bramble.
Work by Edwards et al. + our results =⇒ bramble of congestion 2 in FPT
time when dtw ≥ f (k).

I However, f (k) is too large, cylindrical grid ⊇ model of bramble of congestion
2.

Very recent work shows that
dtw ≥ t = O(k48 log13 k) =⇒ bramble of congestion ≤ 8 .

I Starts with path-system we can construct in FPT time.
I Question: can this bramble be constructed in FPT time?
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THANKS!
(D, k) k-linked

sets
Bramble
of order k

Well-linked
long path

Decomposition
of width ≤ f (k)

(1)
(4)

(2) (3)

(1) Haven vs Decomposition in XP time.
(2) Haven ⇒ Bramble of size nO(k).
(3) Bramble ⇒ Well-linked long path: working with hitting sets (XP time).

X(1) k-linked sets vs Decomposition in FPT time.
X(2) k-linked sets ⇒ Bramble that is easier to work with.
X(3) Bramble ⇒ Well-linked long path: working with hitting sets (FPT time).
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Cylindrical Grid

Cylindrical Grid of order k
k cycles, same direction.
2k alternating paths.

1 / 6



Partitioning sets
- Given T ⊆ V (D):

Definition ((T , r)-Partitioning Sets)
B Z ⊆ V (D) is a (T , r)-partitioning set if |T ∩ V (C)| ≤ r for every strong

component C of D \ Z.

|T | = 7, r = 3.
Z is (T , r)-partitioning set.

FPT algorithm when parameterized by |T |.
Question: FPT algorithm when parameterized by |Z|?

I T = V (D), r = 0 =⇒ Feedback Vertex Set.
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Directed tree-width-I

a

b c

d e f g

h

i j

a

h b c

i j d e f g

Place vertices into “bags”.
Set edges as “guards”.
{a} guards {h, i , j}.

=⇒ No path starting and ending in {h, i , j} using vertices from {b, c, d , e, f , g}
in G \ {a}.
width = size of largest set of “bag” + adjacent “guards”.
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Directed tree-width-II

Estimation to how close a directed graph is to a DAG.

Definition (Arboreal decomposition)
An arboreal decomposition of a directed graph G = (V ,E ) is a triple T =
(R,X ,W) where:

R is an arborescence;
X = {Xe : e ∈ E (R)};
W = {Wr : r ∈ V (R)};
X and W are families of subsets of V (G),

and
W partitions V (G) into non-empty sets;
if e ∈ E (R) then

⋃
{Wr : r ∈ V (R), r > e} is guarded by Xe .
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Havens

Definition (Haven of order k)
A function h(Z ) s.t., for Z ⊆ V (D) with |Z | ≤ k − 1,

B h(Z ) is strongly connected component of D \ Z ; and
B Z ′ ⊆ Z =⇒ h(Z ) ⊆ h(Z ′).
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Well-linked sets

Definition (Well-linked sets)
Set A ⊆ V (D) is well-linked if:

For all disjoint X ,Y ⊆ A with |X | = |Y |,

I There are |X | pairwise disjoint paths from X to Y .
order(A) = |A|.

A
|X | = 4 |Y | = 4
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