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Chordal graphs

Definition (Chordal graphs)
A graph G is chordal

=⇒
G has no induced cycle of size at least 4.

Solvable:
Clique (polynomial time).

Vertex Coloring (polynomial time).

Hard:

k-Dominating Set (W[2]-complete).
k-Steiner Tree (W[2]-hard).

We show that k-Dominating Set and k-Steiner Tree are FPT in some sub-
classes of chordal graphs.
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Dominating and Steiner
Dominating Set
Input: Graph G , integer k.
Question: Is there D ⊆ V (G) with |D| ≤ k s.t. every v ∈ V (G) \ D has a
neighbor in D?
D is a dominating set of G .

Connected Dominating Set
Input: Graph G , integer k.
Question: Is there D ⊆ V (G) with |D| ≤ k s.t. every v ∈ V (G) \ D has a
neighbor in D and G [D] is connected?
D is a connected dominating set of G .

Natural parameter =⇒ k (=size of the solution.)

Connected Dominating Set and Steiner Tree have the same complexity
in subclasses of chordal graphs.

K. White, M. Farber, and W. Pulleybank.
Steiner trees, connected domination and strongly chordal graphs
Networks 15, 1985
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Graph G , family of sets S = {Sv | v ∈ V (G)}

Definition (Intersection graphs)
G is the intersection graph of S

=⇒
uv ∈ E (G) ⇐⇒ Su ∩ Sv 6= ∅.

Interval graphs: intersection of subpaths of a path.
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⊂
Rooted directed path graphs (RDV): intersection of directed paths of an out-tree.

⊂
Directed path graphs (DV): intersection of directed paths of an oriented tree.

⊂
Undirected path graphs (UV): intersection of paths of a tree.

⊂
Chordal graphs: intersection of subtrees of a tree.
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RDV DV UV Chordal
Dominating Poly
Steiner Tree Poly

What is between UV and Chordal?

Leafage.
Vertex leafage.

For RDV:
K.S. Booth and J.H. Johnson.
Dominating sets in chordal graphs.
SIAM Journal on Computing 11(1), 1982

K. White, M. Farber, and W. Pulleybank.
Steiner trees, connected domination and strongly chordal graphs.
Networks 15, 1985
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RDV DV UV Chordal
Dominating Poly NP-c
Steiner Tree Poly NP-c

What is between UV and Chordal?

Leafage.
Vertex leafage.

For UV:
K.S. Booth and J.H. Johnson.
Dominating sets in chordal graphs.
SIAM Journal on Computing 11(1), 1982

C.H.H. Figueiredo, A.A. Melo, D. Sasaki, and A. Silva.
Revising Johnson’s table for the 21st century.
Discrete Applied Mathematics, 2021
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RDV DV UV Chordal
Dominating Poly NP-c W[2]-h on k
Steiner Tree Poly NP-c W[2]-h on k

What is between UV and Chordal?

Leafage.
Vertex leafage.

For Chordal:
V. Raman and S. Saurabh.
Short cycles make W-hard problems hard: FPT algorithms for W-hard
problems in graphs with no short cycles.
Algorithmica 52(2), 2008.
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RDV DV UV Chordal
Dominating Poly Open NP-c W[2]-h on k
Steiner Tree Poly Open NP-c W[2]-h on k

What is between UV and Chordal?

Leafage.
Vertex leafage.
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Examples
Nodes: V (T ), Vertices: V (G).

Square node a =⇒ ∃v | Tv = {a}.

Definition (Tree model)
T = (T , {Tv | v ∈ V (G)}) is a tree model of G

=⇒
Each Tv ⊆ T , and uv ∈ E (G) ⇐⇒ V (Tu) ∩ V (Tv ) 6= ∅.

a

b

c d
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Tu = {b},Tv = {c},Tw = {d},
Tblue = {b, a, c}, Tred = {b, a, d}.
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Examples
Nodes: V (T ), Vertices: V (G). Square node a =⇒ ∃v | Tv = {a}.

Definition (Tree model)
T = (T , {Tv | v ∈ V (G)}) is a tree model of G

=⇒
Each Tv ⊆ T , and uv ∈ E (G) ⇐⇒ V (Tu) ∩ V (Tv ) 6= ∅.

a
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c d

e

Oriented tree

u

v w
z

redblue

cyan

Tu = {b},Tv = {c},Tw = {d},
Tblue = {b, a, c}, Tred = {b, a, d}. Tcyan = {e, a, d}.
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Leafage and vertex leafage

Let T = (T , {Tv | v ∈ V (G)}) be a tree-model of G .

Definition (Leafage, vertex leafage of a model)

Leafage `(T ) = #leaves of T .

Vertex leafage v`(T ) = max
v∈V (G)

{#leavesTv}.

Definition (Leafage, vertex leafage of a graph)

Leafage `(G) = min k s.t G has a tree model T ′ w. `(T ′) = k.

Vertex leafage v`(G) = min k s.t G has a tree model T ′ w. v`(T ′) = k.

v`(G) ≤ `(G) =⇒ `(G) is a stronger parameter.
Interval graphs: chordal graphs with `(G) ≤ 2.
Undirected path graphs: chordal graphs with v`(G) ≤ 2.
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Definition (Leafage, vertex leafage of a graph)
Leafage `(G) = min k s.t G has a tree model T w. `(T ′) = k.

Vertex leafage v`(G) = min k s.t G has a tree model T w. v`(T ′) = k.

Find tree model with `(G) leaves: polynomial time.
Decide if v`(G) ≤ 3: NP-complete.
Dominating Set is FPT w.r.t. `(G).

M. Habiba and L. Stacho.
Polynomial-time algorithm for the leafage of chordal graphs.
ESA, 2009.
S. Chaplick and J. Stacho.
The vertex leafage of chordal graphs.
Discrete Applied Mathematics 168, 2014.

F.V. Foming, P.A. Golovach, and J.F. Raymond.
On the tractability of optimization problems on H-graphs.
Algorithmica 89(2), 2020.
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Bounding the leafage by the vertex leafage
Minimal tree model w. host tree T =⇒ ensures that ∃v | V (Tv ) = {x} for
every leaf x ∈ V (T ).

I v is leafy vertex.

a

b

c d

u

v w

redblue

cyan

u, v ,w are leafy vertices.

Every dominating set D must dominate all leafy vertices.

I For each leafy v with Tv = {x}, ∃u ∈ D s.t. x ∈ V (Tu).

Each Tu can cover at most v`(G) leaves.

I `(G) ≥ k · v`(G) + 1, instance of k-Dominating Set is negative.

Every positive instance of k-Dominating Set has `(G) ≤ k · v`(G).
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Every positive instance of k-Dominating Set has `(G) ≤ k · v`(G).
Square nodes are associated with leafy vertices.
v`(G) = 2 in the example.
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k-Dominating Set in Undirected path graphs

Every positive instance of k-Dominating Set has `(G) ≤ 2k.
Square nodes are associated with leafy vertices.

Origin

Target

From red vertex: ≤ 2k − 1 “directions” (other
leaves).

Pick target.
Choose longest path Tv from red origin to blue
target.
Mark all u with V (Tu) ∩ V (Tv ) 6= ∅ as
dominated, reduce instance.
Repeat for new origin,target pair of
not-dominated leafy vertices.
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2O(k log k) · nO(1) algorithm for k-Dominating Set in undirected path graphs.

O∗
(
2k·v`(G)) for k-Steiner Tree and k-Connected Dominating Set.

Beats the alternative: bound `(G) and apply algorithm by Fomin et al.
(2020) yields 2O(k2) · nO(1) algorithm.

RDV DV UV Chordal
Dominating Poly Open FPT W[2]-hard
Steiner Tree Poly Open FPT W[2]-hard

We show: Dominating Set, Steiner Tree, Connected
Dominating Set are FPT when parameterized by k + v`(G) when tree
model with optimum vertex leafage is given.
Undirected path graphs are recognizable in polynomial time.

F.V. Foming, P.A. Golovach, and J.F. Raymond.
On the tractability of optimization problems on H-graphs.
Algorithmica 89(2), 2020.
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RDV DV UV Chordal
Dominating Poly Open FPT W[2]-hard
Steiner Tree Poly Open FPT W[2]-hard

FPT w.r.t. `(G) =⇒ FPT w.r.t. k + v`(G).

I Provided a tree model with optimal vertex leafage is given.
Works for class of Min-LC-VSPσ,ρ problems.
Regarding DV, we believe that

I Dominating Set is FPT when parameterized by the number c of source
nodes of the tree model (c = 1 =⇒ RDV), and

I Dominating Set is NP-complete in DV =⇒ separation of DV and RDV.
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Min-LC-VSPσ,ρ

Graph G , subsets σ, ρ ⊆ {0, · · · , n − 1}

Definition ((σ, ρ)-sets)
S is a (σ, ρ)-set

=⇒
|N(v) ∩ S| ∈ σ for every v ∈ S and |N(v) ∩ S| ∈ ρ for every v 6∈ S.

Min-LC-VSPρ,σ

Input: Graph G , integer k.
Question: Is there a (σ, ρ)-set X with |X | ≤ k?
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Dominating and Steiner

Dominating Set
Input: Graph G , integer k.
Question: Is there D ⊆ V (G) with |D| ≤ k s.t. every v ∈ V (G) \ D has a
neighbor in D?
D is a dominating set of G .

Steiner Tree
Input: Graph G , set X ⊆ V (G), integer k.
Question: Is there S ⊆ V (G) with |S| ≤ k s.t. G [X ∪ S] is connected?
S is a Steiner set.

Connected Dominating Set
Input: Graph G , integer k.
Question: Is there D ⊆ V (G) with |D| ≤ k s.t. every v ∈ V (G) \ D has a
neighbor in D and G [D] is connected?
D is a connected dominating set of G .

Natural parameter =⇒ k (=size of the solution.)
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XP and FPT

Problem with input size n, associated parameter k:

XP problem ⇒ f (k) · ng(k) time algorithm.
I Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.

I Example: O(2k · n2) (c independent of k).

W[1]-hard problem ⇒ strong evidence that it is not FPT.
Hardness hierarchy:

W[1] ⊆W[2] ⊆ · · · ⊆W[t] ⊆ XP
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