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A graph G is chordal
=
G has no induced cycle of size at least 4.

Solvable:
e CLIQUE (polynomial time).
e VERTEX COLORING (polynomial time).

Hard:
@ k-DOMINATING SET (W([2]-complete).
@ k-STEINER TREE (W/[2]-hard).

We show that k-DOMINATING SET and k-STEINER TREE are FPT in some sub-
classes of chordal graphs.
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Dominating and Steiner

DOMINATING SET
Input: Graph G, integer k.

Question: Is there D C V/(G) with |[D| < ks.t. every v € V(G)\ D has a
neighbor in D?
D is a dominating set of G.
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Input: Graph G, integer k.

Question: Is there D C V/(G) with |[D| < ks.t. every v € V(G)\ D has a
neighbor in D and G[D] is connected?

D is a connected dominating set of G.

Natural parameter —> ’ k (=size of the solution.) ‘

CONNECTED DOMINATING SET and STEINER TREE have the same complexity
in subclasses of chordal graphs. J

@ K. White, M. Farber, and W. Pulleybank.
Steiner trees, connected domination and strongly chordal graphs
Networks 15, 1985
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Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
—
uv € E(G) < S,NS, #0.

Interval graphs: intersection of subpaths of a path.

5/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.




Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.

5/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
—
uv € E(G) < S,NS, #0.

Interval graphs: intersection of subpaths of a path.

6/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.
C
Rooted directed path graphs (RDV): intersection of directed paths of an out-tree.

6/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.
C
Rooted directed path graphs (RDV): intersection of directed paths of an out-tree.

C
Directed path graphs (DV): intersection of directed paths of an oriented tree.

6/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.
C
Rooted directed path graphs (RDV): intersection of directed paths of an out-tree.
C
Directed path graphs (DV): intersection of directed paths of an oriented tree.
C
Undirected path graphs (UV): intersection of paths of a tree.

6/16



Graph G, family of sets S = {S, | v € V(G)}

Definition (Intersection graphs)

G is the intersection graph of S
=
uv € E(G) < S,NnS, #0.

Interval graphs: intersection of subpaths of a path.

C
Rooted directed path graphs (RDV): intersection of directed paths of an out-tree.
C
Directed path graphs (DV): intersection of directed paths of an oriented tree.
C
Undirected path graphs (UV): intersection of paths of a tree.
C

Chordal graphs: intersection of subtrees of a tree.
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RDV DV uv Chordal

DOMINATING Poly
STEINER TREE Poly
For RDV:

D K.S. Booth and J.H. Johnson.
Dominating sets in chordal graphs.
SIAM Journal on Computing 11(1), 1982

@ K. White, M. Farber, and W. Pulleybank.
Steiner trees, connected domination and strongly chordal graphs.
Networks 15, 1985
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RDV DV uv Chordal

DoOMINATING Poly NP-c
STEINER TREE Poly NP-c
For UV:

@ K.S. Booth and J.H. Johnson.
Dominating sets in chordal graphs.
SIAM Journal on Computing 11(1), 1982

@ C.H.H. Figueiredo, A.A. Melo, D. Sasaki, and A. Silva.
Revising Johnson's table for the 21st century.
Discrete Applied Mathematics, 2021
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RDV DV uv Chordal

DOMINATING Poly NP-c WI[2]-h on k
STEINER TREE Poly NP-c WI[2]-h on k
For Chordal:

@ V. Raman and S. Saurabh.
Short cycles make W-hard problems hard: FPT algorithms for W-hard
problems in graphs with no short cycles.
Algorithmica 52(2), 2008.
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RDV DV uv Chordal

DOMINATING Poly Open NP-c WI2]-h on k
STEINER TREE Poly Open NP-c WI2]-h on k

What is between UV and Chordal?
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RDV DV uv Chordal
DOMINATING Poly Open NP-c WI2]-h on k
STEINER TREE Poly Open NP-c WI2]-h on k

What is between UV and Chordal?
o Leafage.
o Vertex leafage.
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Examples

Nodes: V(T), Vertices: V(G).

Definition (Tree model)

T=(T,{T,|veV(G)})is a tree model of G
=
Each T, C T, and uv € E(G) < V(T,)N V(T,) #0.
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Definition (Tree model)

T=(T,{T,|veV(G)}) is a tree model of G
=
Each T, C T, and uv € E(G) < V(T,)n V(T,) # 0.

u

Out-tree

blue red

T,={b}, T, ={c}, T\ = {d},
Thwe = {b,a,c}, Treqg ={b,a,d}.
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Examples

Nodes: V/(T), Vertices: V(G). Square node a = 3v | T, = {a}.

Definition (Tree model)

T=(T,{T,|veV(G)}) is a tree model of G
=
Each T, C T, and uv € E(G) < V(T,)n V(T,) # 0.

u

Oriented tree
blue red

T, =A{b}, T, = {c}, Tw = {d},
Tb/ue = {b7 a, C}: Tred = {b a, d} Tcyan - {e: a, d}
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Leafage and vertex leafage

Let 7 = (T,{T, | v e V(G)}) be a tree-model of G.

Definition (Leafage, vertex leafage of a model)

Definition (Leafage, vertex leafage of a graph)
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ve

Definition (Leafage, vertex leafage of a graph)
o Leafage /(G) = mink s.t G has a tree model 7" w. ((7") = k.

o Vertex leafage v/(G) = min k s.t G has a tree model 7" w. v/(T") = k.

e v/(G) </{(G) = £(G) is a stronger parameter.
o Interval graphs: chordal graphs with ¢(G) < 2.
o Undirected path graphs: chordal graphs with v/(G) < 2.
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@ M. Habiba and L. Stacho.
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o Leafage /(G) = mink s.t G has a tree model 7 w. ((7") = k.

o Vertex leafage v/(G) = mink s.t G has a tree model 7 w. v/(T") = k

e Find tree model with ¢(G) leaves: polynomial time.
@ Decide if v/(G) < 3: NP-complete.
@ DOMINATING SET is FPT w.r.t. ¢(G).

@ M. Habiba and L. Stacho.
Polynomial-time algorithm for the leafage of chordal graphs.
ESA, 20009.

@ S. Chaplick and J. Stacho.
The vertex leafage of chordal graphs.
Discrete Applied Mathematics 168, 2014.

[@ F.V. Foming, P.A. Golovach, and J.F. Raymond.
On the tractability of optimization problems on H-graphs.
Algorithmica 89(2), 2020.
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Bounding the leafage by the vertex leafage

® Minimal tree model w. host tree T = ensures that Jv | V/(T,) = {x} for
every leaf x € V(T).

> v is leafy vertex.
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k-DOMINATING SET in Undirected path graphs

‘ Every positive instance of k-DOMINATING SET has /(G) < 2k. ‘

@ Square nodes are associated with /eafy vertices.

Origin
n
o From red vertex: < 2k — 1 “directions” (other
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Origin

From red vertex: <2k — 1 “directions” (other
leaves).

Pick target.

Choose longest path T, from red origin to blue
target.

Mark all u with V(T,)NV(T,) # 0 as
dominated, reduce instance.

Repeat for new origin,target pair of
not-dominated leafy vertices.

o Bounded search tree: (2k)? choices of origin,target pairs.
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Origin
B

From red vertex: <2k — 1 “directions” (other
leaves).

Pick target.

Choose longest path T, from red origin to blue
target.

Mark all u with V(T,)NV(T,) # 0 as
dominated, reduce instance.

Repeat for new origin,target pair of
not-dominated leafy vertices.

o Bounded search tree: (2k)? choices of origin,target pairs.

> (2k)? choices = new instance on < k — 1 leaves = (2k — 2)? choices...
o Budget k = height < k.
o 20(klogk) . nO) 3lgorithm.
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O* (2kv4©)) for k-STEINER TREE and k-CONNECTED DOMINATING SET.

o Beats the alternative: bound ¢(G) and apply algorithm by Fomin et al.
(2020) yields 2°(<) . )1 algorithm.

RDV DV uv Chordal
DOMINATING Poly Open FPT W(2]-hard
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@ We show: DOMINATING SET, STEINER TREE, CONNECTED
DOMINATING SET are FPT when parameterized by k + v/(G) when tree
model with optimum vertex leafage is given.

@ Undirected path graphs are recognizable in polynomial time.

@ F. Gavril.

A recognition algorithm for the intersection graphs of paths in trees.
Discrete Mathematics 23(3), 1978.
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@ FPT w.rt. ((G) = FPT w.r.t. k+v{(G).
» Provided a tree model with optimal vertex leafage is given.

@ Works for class of MIN-LC-VSP, , problems.

@ Regarding DV, we believe that
» DOMINATING SET is FPT when parameterized by the number ¢ of source

nodes of the tree model (c =1 = RDV), and

» DOMINATING SET is NP-complete in DV = separation of DV and RDV.
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MiIN-LC-VSP,,

Graph G, subsets o,p C {0,--- ,n—1}

Definition ((o, p)-sets)

Sis a (o, p)-set
=

[IN(v)N'S| € o for every v € S and [N(v) N S| € p for every v & S.

MIN-LC-VSP,, »
Input: Graph G, integer k.
Question: Is there a (o, p)-set X with |X| < k?

2/4



Dominating and Steiner

DOMINATING SET

Input: Graph G, integer k.

Question: Is there D C V(G) with |D| < ks.t. every v € V(G) \ D has a
neighbor in D?

D is a dominating set of G.

STEINER TREE

Input: Graph G, set X C V(G), integer k.

Question: Is there S C V(G) with |S| < k s.t. G[X U S] is connected?
S is a Steiner set.

CONNECTED DOMINATING SET

Input: Graph G, integer k.

Question: Is there D C V/(G) with |[D| < ks.t. every v € V(G) \ D has a
neighbor in D and G[D] is connected?

D is a connected dominating set of G.

Natural parameter —> ‘ k (=size of the solution.) ‘
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XP and FPT

Problem with input size n, associated parameter k:

o XP problem = f(k) - n8(k) time algorithm.
» Example: O(n*).
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XP and FPT

Problem with input size n, associated parameter k:

XP problem = f(k) - n&K) time algorithm.
» Example: O(n*).
e FPT problem = f(k) - n¢ time algorithm.
» Example: O(2% - n?) (c independent of k).
W/1]-hard problem = strong evidence that it is not FPT.

Hardness hierarchy:

(W[1] CW[2] C - CW[r] CXP]
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